Confusing conventional notation and more

There is a wild mess in conventional notation of axiomatic set theory with letters（Latin，Greek and even Hebrew，small and capital，in various styles）and ad－hoc introduced symbols．Similar expressions may relate to completely different categories．Sometimes the same expressions are used with different meaning so that they can only be understood in local context．Some entities are just introduced metalingually without proper representation in object－language．And one should always be skeptical when＇virtual＇entities come into play as it is the case in connection with classes．This mess makes it very complicated for the simple－minded reader and perhaps even hides problems．Axiomatic set－theory talks about well－ordering，but it certainly needs ORDER itself！

Conventional publications of axiomatic set theory lack a uniform syntax．Characters are taken from Latin，Greek，Hebrew－small and capital letters，even with special fonts，special symbols and joining them without general rules，not distinguishing between individuals，functions and relations，and worse： mixing object－language and metalanguage．Principle shortcoming is the missing difference between scheme and function－constant，formula and relation－constant strings（the name of a function or relation and their value expressions，often called＇terms＇）．Some are just given English names that refer to them， and some of these names are not even unique．Finally the reader has to know if something is a set or a class（that are not really ontological parts）．

Conventional mess
Funcish with uniform，unique and context－independent syntax

```
sets a \ldots.z all al a _.. sort
    A \ldots.Z Z Z1 Z Z Z Z _.. \sigma
ordinals \alpha \beta\gamma\delta ... \psi ? ???
```

	individual－constant
$0=\varnothing=\{ \} \quad$ three possibilities	σ O
$1=\{\{ \},\{\{ \}\}\}$	$\sigma u=(' \sigma n)$
$2=\{\{ \},\{\{ \}\} ;\{\{ \},\{\{ \}\}\}\} \ldots$	$\sigma b=('(' \sigma n))$
$\omega=\mathfrak{\aleph}_{0} \quad$ two possibilities	Ovnl

$\{a\}$	function－constant $(\mid \sigma)$	scheme （｜o1）	particular－notation
$\{a, b\}$	$(\sigma \mid \sigma)$	（ $\left.\sigma_{1} \mid \sigma_{2}\right)$	
$\{a,\{a\}\}$	（＇σ ）	（＇$\sigma 1$ ）	
$\{a, b, c\}$	（ $\sigma\|\sigma\| \sigma$ ）	$\left(\sigma_{1}\left\|\sigma_{2}\right\| \sigma_{3}\right)$	
Ua conventionally both are	$(\cup \sigma)$	（ $\cup \sigma 1$ ）	
$a \cup b$ called＇union＇	$(\sigma \cup \sigma)$	$(\sigma 1 \cup \sigma 2)$	
คa conventionally both are	$(\cap \sigma)$	（ $\cap \sigma 1$ ）	
$a \cap b$ called＇intersection＇	$\sigma \cap \sigma)$	$(\sigma 1 \cap \sigma 2)$	
$a b$ complement	（ $\left.\sigma 1 / \sigma_{2}\right)$	（ σ / σ ）	
〈a，b〉 ordered pair（oparition）	$(\sigma-\sigma)$	$(\sigma 1-\sigma 2)$	
$a \times b$ cartesian product（production）	$(\sigma \times \sigma)$	$(\sigma 1 \times \sigma 2)$	
$a^{2} a^{3}$	$(\sigma \times) \quad(\sigma \times \times)$	$(\sigma 1 \times)(\sigma 1 \times \times)$	
$\boldsymbol{P a}$ power set（potention）	（介б）	（介б1）	

	relation－constant	relity－formula	
$a \subset b$	$\sigma \subset \sigma$	$\sigma 1 \subset \sigma 2$	particular－notation
$a \subseteq b$	$\sigma \subseteq \sigma$	$\sigma 1 \subseteq \sigma 2$	$"$
$x<y$	$\sigma<\sigma$	$\sigma 1<\sigma 2$	$"$
$x A y a b c$ where A and b are not sets	$\mathrm{A}(\sigma ; \sigma)$	$\mathrm{A}(\sigma 1 ; \sigma 2)$	standard－notation
$f: a \rightarrow b$	$\mathrm{UFU}(\sigma ; \sigma ; \sigma)$	$\mathrm{UFU}(\sigma 1 ; \sigma 2 ; \sigma 3)$	$"$

${ }^{\text {a }} b$ set ? class of mapping sets from a to b	UFUS $(\sigma ; \sigma)$	UFUS $(\sigma 1 ; \sigma 2)$	$"$	
transitive X	transitivity	$\operatorname{TR}(\sigma)$	$\operatorname{TR}(\sigma 1)$	$"$
well-order X	fundamentality	$\operatorname{FU}(\sigma)$	$\operatorname{FU}(\sigma 1)$	$"$
total-order X	totality	$\operatorname{TO}(\sigma)$	$\operatorname{TO}(\sigma 1)$	$"$
On (X) or $X \in$ On	ordinality class	$\operatorname{OR}(\sigma)$	$\operatorname{OR}(\sigma 1)$	$"$

Mencish with uniform, unique and context-independent syntax

$\psi(x) \quad \phi(x)$	σ_{1}	unary-formula with variable σ_{1}
$\psi(x, y) \quad \phi(x, y)$	σ_{1}	binary-formula with variable strings $\sigma_{1} \sigma_{2}$ $\psi(x, y)$$\quad \phi(x, y)$
weird construction:	σ_{1}	multary-formula with variable strings $\sigma_{1} \sigma_{2} \sigma_{3} \ldots$
$A(x, y)=\{z \in y: \phi(x, z)\}$	σa	$\forall \sigma_{3}\left[[\sigma 3 \in \sigma a] \leftrightarrow\left[\left[\left(\sigma 3 \in \sigma_{2}\right] \wedge[\sigma]\right]\right]\right.$, or formula with $\sigma_{1} \sigma_{3}$

section 2.4 Interpretations of 'Axiomatic Set Theory' ast-web.pdfby Peter Koepke , Alex Wilke, R. Knight 2006, Boris Zilber Oxford; and similar sourcesintroduce further symbol combinations, e.g. :

collection of sentences S of sentence σ, S is a model			
$\langle M, E\rangle$	domain M, binary relation E		
$\langle M, \in\rangle$			
-	$=$		
Φ^{\prime}	Φ^{U}	Φ^{Φ}	Φ^{U}
$\operatorname{card}(\boldsymbol{R})$	$\operatorname{card}(\boldsymbol{N})$	\boldsymbol{Q}	

And its getting worse.Jürgen-Michael Glubrecht, Arnold Oberschelp, Günter Todt: Klassenlogik. On pages 449-455 they list symbols, 2 pages nonalphabetic and 5 pages relating to some sort of alphabets.

John Bercow: Order !
(foto by courtesy: Parliamentary Recording Unit, Parliament of the United Kingdom 2019)

Johann Wolfgang von Goethe, Faust Part I, Scene IV The Study

Student After all that, Ifeel as stupid As if I'd a mill wheel in my head.

Mephistopheles Next, before all else, you'll fix Your mind on Metaphysics!
See that you're profoundly trained In what never stirs in a human brain: You'll learn a splendid word For what's occurred or not occurred.

Mir wird von alledem so dumm, Als ging, mir ein Mühlrad im Kopf herum

Nachher, vor allen andern Sachen, Müßt Ihr Euch an die Metaphysik machen! Da seht, daß Ihr tiefsinnig faßt, Was in des Menschen Hirn nicht paßt; Für was drein geht und nicht drein geht, Ein prächtig Wort zu Diensten steht.

To me, set theory and the axiom, Is both a mill and a conundrom.

Die Lehre von Mengen mit Axiomen, Verwirrt meine Sinne, oh schrecklich Omen.

