A Flaw in Separation Axioms

A New Look at Axiomatic Set Theory

Hannes Hutzelmeyer

Summary

The author has developed an approach to logics that comprises, but also goes beyond predicate logic. The FUME method contains two tiers of precise languages: object-language Funcish and metalanguage Mencish. It allows for a very wide application in mathematics from geometry, number theory, recursion theory and axiomatic set theory with first-order logic, to higher-order logic theory of real numbers etc. . The conventional treatment of axiomatic set theory (ZFC) is replaced by the abstract calcule sigma so that certain shortcomings can be avoided by the use of Funcish-Mencish language hierarchy:

- precise talking about formula strings necessitates a formalized metalanguage
- talking about open arities, general tuples, open dimensions of spaces, finite systems of open cardinality and so on necessitates a formalized metalanguage. 'dot dot dot ... ' just will not do
- the Axiom of Infinity is generalized in order to allow for certain other infinite sets besides the natural number representation according to von Neumann (i.e. general recursion)
- the Axioms of Separation are modified as it seems more convenient
- there are only enumerably many properties that can be constructed from formula strings, as these are finite strings of characters from a finite alphabet; this should be kept in mind in connection with the Axioms of Replacement
- a new look at Cantor's continuum hypothesis in abstract axiomatic set theory leads to the question of so-called basis-incompleteness versus proof-incompleteness
- the Axioms of Separation seem to have a flaw; there is a caveat for axiomatic set theory.

And this leads to another serious problem. It is questionable if one can introduce relation-constants (including the unary case of property-constants) in a proper fashion in axiomatic set theory.

Copyright

All rights reserved. No reproduction of this publication may be made without written permission. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

Contact: Hutzelmeyer@pai.de
https://pai.de

1 FUME-method object-language and metalanguage

Axiomatic set theory is commonly claimed as a foundation system of all mathematics or at least most mathematics. The somewhat surprising fact is that only one sort and only first-order-logic (FOL) is needed in axiomatic set theory, or what is usually called predicate-logic with identity

The author has put forward a precise system of object-language and metalanguage that overcomes certain difficulties of predicate logic and that extends to a full theory of types. In order to describe an object-language one also needs a metalanguage. According to the author's principle metalanguage has to be absolutely precise as well, normal English will not do. The FUME-method contains at least three levels of language:

Funcish	object-language	formalized precise.
Mencish	metalanguage	formalized precise
English	supralanguage	natural

'Calcule' is the name given to a mathematical system with the precise language-metalanguage method Funcish-Mencish . 'Calcule' is an expression coined by the author in order to avoid confusion. The word 'calculus' is conventionally used for real number mathematics and various logical systems. As a German translation 'Kalkul' is proposed for 'calcule' versus conventional 'Kalkül' that usually corresponds to 'calculus'.

A concrete calcule talks about a codex of concrete individuals (given as strings of characters) and concrete functions and relations that can be realized by 'machines' (called calculators).

An abstract calcule talks about nothing. It only says: if some entities exist with such and such properties they also have certain other properties. Essentially there are only 'if-then' statements. E.g. 'if there are entities that obey the Euclid axioms the following sentence is true for these entities' .

Calcules with first-order logic FOL are called haplo-calcules, calcules with higher-order logic HOL for a theory of types are called hypso-calcules. As the following will only deal with first-order logic the expression 'calcule' will always mean 'haplo-calcule' . An abstract calcule is based on a finite count or on enumerably many axioms as opposed to a concrete calcule whose foundation can be put into practice by a machine. Axiom strings are certain sentence strings, they can also be provided with a metalingual Axiom mater (rather than the usual 'scheme' or 'schema', as the expression scheme has a different meaning in Mencish), that produce enumerably many Axiom strings.

Calcules are given names based on the Greek sort names. Small letters are used for abstract calcules e.g. sigma with sort σ, capital letters for concrete calcule e.g. ALPHA with sort A.

Figure 1 Hierarchy of languages and codices for two example calcules

Metalanguage Mencish is chosen with perfect exactness, just as object-language Funcish. They both have to meet the calculation criterion of truth: every step of reasoning must be such that it can be checked by a calculating machine. Funcish and Mencish sentences and metasentences resp.are understandable without context: 'wherefore by their words ye shall know them' (vs. Mathew 7.20).

On first sight Funcish and Mencish look familiar to what one knows from predicate-logic. However, they are especially adapted to a degree of precision so that they can be used universally for all kind of mathematics. And they lend themselves immediately to a treatment by computers, as they have perfect syntax and semantics. It is not the place to go into details. Both Funcish and Mencish have essentially the same syntax. Notice that Funcish has a context-independent notation, which implies that one can determine the category of every object uniquely from its syntax. The reader may be puzzled by some expressions that are either newly coined by the author or used slightly different from convention. This is done in good faith; the reason for the so-called Bavarian notation is to avoid ambiguities.

The fonts-method allows to distinguish between object-language (Arial and Symbol, normal, e.g. $\forall \sigma_{1}[$), metalanguage (Arial and Symbol, boldface italics e.g. $\sigma 1$ or Axiom) and supralanguage English (Times New Roman)

The essential parts of a language are its sentences. A sentence is a string of characters of a given alphabet that fulfills certain syntactical and semantical rules. This means that metalanguage talks about the strings of the object-language. The essential parts of the metalanguage are the metasentences (that are strings of characters as well, just in boldface italics). In supralanguage one talks about the metasentences, just as metalanguage talks about object-language. Here it is not discussed in general what an object-language talks about .

Mencish has strictly first order logics, it has some recursion with 3 metafunctions and 6 binary metarelations for the manipulation of Funcish strings, that can be implemented by machines operating on strings of characters. The necessary metafunctions and metarelations:

synaption	$(\sigma * \sigma)$	concatenation of two strings, $\sigma \sigma$ except for leading 0
character-deletion	$(\sigma \partial \sigma)$	delete $2^{\text {nd }}$ string in $1^{\text {st }}$ string
string-replacement	$(\sigma ; \sigma / \sigma)$	replece $2^{\text {nd }}$ string in $1^{\text {st }}$ string by $3^{\text {rd }}$ string, e.g. variable by constant
matching	$\sigma \approx \sigma$	with respect to string length
shorter	σ / σ	with respect to string length
suitably containing	$\boldsymbol{\sigma} \boldsymbol{\sigma}$	e.g. variable
suitably bound-in	$\boldsymbol{\sigma} / \sigma$	variable
suitably free-in	$\boldsymbol{\sigma} / \boldsymbol{\sigma}$	variable
compatible	$\boldsymbol{\sigma \sim \sigma}$	no variable is free in one and bounded in the other string.

A calcule contains basis-individual-constant, basis-relation-constant and basis-function-constant strings, one can introduce extra-individual-constant, extra-relation-constant and extra-function-constant strings by definitions, that are either explicit or implicit. An explicit definition is just an abbreviation whereas an implicit definition necessitates some logical reasoning. Without proper introduction it should be clear what is meant by the following essential metaproperties :

pattern	term	no variable	e.g. (3+Au)
	scheme	with variable	e.g. ($\left.\left(\mathrm{A}_{1}+\mathrm{A}_{1}\right) \times \mathrm{A} 3\right)$
phrase	sentence	no free variable	
	formula	with free variable but no A0	e.g. $\exists \mathrm{A}_{3}\left[\mathrm{~A}_{1}=\left(\mathrm{A}_{3} \times \mathrm{A}_{3}\right)\right]$
	formulo	with free variable and free A_{0}	e.g. $\left[\mathrm{A}_{2}=\left(\mathrm{A}_{0}+\mathrm{A}_{1}\right)\right] \vee\left[\mathrm{A}_{1}=\left(\mathrm{A}_{0}+\mathrm{A}_{2}\right)\right]$

Implicit definitions are based on UNEX-formulo ${ }^{1)}$ strings. UNEX-formulo strings define relations that hold for exactly one value $\sigma 0$ for every booking of the input variable strings according to the arity of the UNEX-formulo . Hopefully it will become clearer in the examples of section 3.

TRUTH mater of implicit definition of individuals (nullary functions) by nullary UNEX-formulo
$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\left[\left[\left[\right.\right.\right.\right.\right.$ formulo(σ_{1})]^[variable($\left.\left.\left.\left.\left.\sigma_{2}\right)\right]\right] \wedge\left[\neg\left[\sigma_{1} \supset \sigma_{2}\right)\right]\right]\right] \wedge\left[\right.$ sentence $\left.\left.\left(\forall \sigma_{0}\left[\sigma_{1}\right]\right)\right]\right] \rightarrow$ [$\exists \sigma_{3}[$ [individual-constant($\sigma \sigma 3$)]^
$\left.\left.\left.\left.\left[\operatorname{TRUTH}\left(\left[\exists \sigma_{0}\left[\left[\sigma_{1}\right] \wedge\left[\forall \sigma_{2}\left[\left[\left(\sigma_{1} ; \sigma_{0} \int \sigma_{2}\right)\right] \rightarrow\left[\sigma_{2}=\sigma_{0}\right]\right]\right]\right]\right] \rightarrow\left[\forall \sigma_{0}\left[\left[\sigma_{1}\right] \leftrightarrow\left[\sigma \sigma_{3}=\sigma_{0}\right]\right]\right]\right)\right]\right]\right]\right]\right]$
TRUTH mater of implicit definition of functions by uanry and multary UNEX-formulo
$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\forall \sigma_{3}\left[\forall \sigma_{4}\left[\forall \sigma_{5}\left[\right.\right.\right.\right.\right.$ [[[[[formulo($\left.\left.\sigma_{1}\right)\right] \wedge\left[\right.$ omny($\left.\left.\left.\sigma_{2}\right)\right]\right] \wedge\left[\right.$ variable($\left.\left.\left.\sigma_{4}\right)\right]\right] \wedge$
$\left.\left.\left[\neg\left[\sigma_{1} \supset \sigma_{4}\right)\right]\right]\right] \wedge\left[\right.$ sentence $\left.\left(\sigma_{2} \forall \sigma_{0}\left[\sigma_{1}\right] \sigma_{3}\right]\right] \wedge\left[\sigma_{5}=\left(\left(\left(\sigma_{2} ; \forall[f ;) \partial \forall\right) \partial[)\right]\right] \rightarrow\right.$
[ヨбб [[standard-function-constant($\left.\sigma \sigma \sigma\left(\sigma_{\partial} \partial\right)\right)$)]^[TRUTH(
$\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left[\sigma_{2} \exists \sigma_{0}\left[\left[\sigma_{1}\right] \wedge\left[\forall \sigma_{4}\left[\left[\left(\sigma_{1} ; \sigma_{0} \int \sigma_{4}\right)\right] \rightarrow\left[\sigma_{4}=\sigma_{0}\right]\right]\right]\right]\right] \sigma_{3}\right] \rightarrow\left[\sigma_{2} \forall \sigma_{0}\left[\left[\sigma_{1}\right] \leftrightarrow\left[\sigma \sigma_{6}\left(\sigma_{5}\right)=\sigma_{0}\right]\right]\right] \sigma_{3}\right]\right)\right]\right]\right]\right]\right]\right]\right]$
where the standard-function-constant string can be replace by a particular-function-constant string if it is considered convenient.

You will find some hints on the front of the hompage https://pai.de/ and some short description in the pdf-downloads that can be started there. A thorough description of Funcish and Mencish is forthcoming.

1) $U N E X$ is short for 'unique existence'

2 Ontological basis and axioms

The obvious question is：how does axiomatic set theory relate to the Funcish－Mencish language system？ The answer is straightforward：one can set up the abstract calcule sigma with FOL which exactly describes ZFC－set－theory，Zermelo－Fraenkel－theory with the axiom of selection（or choice）．

It is clear that one cannot represent ZFC－set－theory by a concrete calcule（that only would allow a finite string for an individual ）．Therefore an abstract calcule is introduced in the following．It will be discussed what it means that FOL is sufficient for axiomatic set－theory and what kind of problems are connected with it．So－called＇classes＇as＇collections of sets that can be unambiguously defined by a property that all its members share＇are not formally contained in ZFC are not treated in this section，although it could be done straightforwardly．Neither does ZFC－set－theory contain any so－called＇urelements＇，i．e．elements of sets that are not sets themselves．

All strings of Funcish for calcule sigma are constructed by concatenation from the following alphabet， of 128 characters where the first line contains all syntax characters including the Greek letter σ for sort ＇set＇，the second and third all function symbols followed by all relation symbols，the fourth all Latin letters for constants（i．e．names）and finally the petit numbers for variable suffices．

		F	\neg	\checkmark	\wedge	\rightarrow	\leftrightarrow	\exists	\forall				）		σ												Symbol12
		－	\diamond	－	$\sqrt{ }$	！	介	\Downarrow	＋	－	\times	1	\uparrow	\downarrow	\oplus	（c）	\otimes	（®）		\div	t	\cap	\cup	＊	∂		
	∇	\square	¢	\＆			\＃	\perp		＋	$<$	\leq	\｛	\approx	\sim	）	1	\bigcirc	\cong	\angle	\subset	\subseteq	\in	X	．		
	A	B	C	D	E	F	G	H h	I	J	K	L	M m	N n	0	P	Q	R	D	T	$\begin{aligned} & \mathrm{U} \\ & \mathrm{u} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{V}} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { w } \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{z} \end{aligned}$	Arial 10 medium
	0	1	2	3	4	5	6	7	8	9	－																8 petit

Table 1 Alphabet for calcule sigma（with enough characters for new defintions）
The admissible pattern（scheme，term）and phrase（formula，sentence）strings are formed with respect to the ontological basis according to the semantic rules for Funcish．The following examples should be sufficient in order to understand this publication（all of it can be defined perfectly，at most simple limitive recursion is necessary）：

```
sort :: \sigma set
type :: (\sigma) I (\sigma;\sigma) I \sigma(\sigma) I \sigma(\sigma;\sigma) ... property, binary relation, unary and binary function
individual-constant :: \sigman | \sigmavnl I \sigmavnpo ... empty set, set of natural numbers, their power set ..
individual-variable:: \sigma0 I \sigma1 I \sigma2 ...
omny :: kety:: }\forall\mp@subsup{\sigma}{1}{}[ I \forall\mp@subsup{\sigma}{1}{}[\forall\mp@subsup{\sigma}{2}{}[\ldots.... ]] I'
function-constant :: \sigma|(\sigma;\sigma) I \sigma\cup(\sigma) I \sigma\Uparrow(\sigma) ... parition, unition, potention ... in standard notation 1)
    (\sigma|\sigma) I (\cup\sigma) I (介\sigma)...
relation-constant :: }\in(\sigma;\sigma) I\subset(\sigma;\sigma) I~(\sigma;\sigma) ... membrity, subity, card-equality ... in standard notat
    \sigma\in\sigma ! }\sigma\subset\sigma ! \sigma~\sigma ... and in corresponding particular notation
term :: \sigman l(|(|(\sigman))) I (介\sigmavnl)|\sigman) ... from function- and individual-constant
scheme ::: \sigma2 l (\sigma1|\sigma4) I (介\sigmavn||(\cup\sigma2)) ... from function- and individual-constant and
    at least one individual-variable
    (all in particular notation)
```

formula strings are formed by proper insertions with $=, \neq, \neg, \vee, \wedge, \rightarrow, \leftrightarrow,[],, \exists, \forall$ from term ， scheme and variable strings except for $\sigma 0$ ．formula strings have at least one free variable ．formulo strings are like formula strings but they must contain $\sigma 0$ as a free variable．
sentence strings are formed like formula strings，however all variable strings must be bound by \forall or \exists ． They may contain $\sigma 0$ as a bound variable ．
${ }^{1)}$ particular notation is used instead of standard notation for better readability for most of the frequently occuring relations and functions

The basis-ingredient strings of abstract calcule sigma of axiomatic set theory (usually called ZFC) contain only one sort σ for sets and only one binary-relation-constant $\sigma \in \sigma$ for membrity. The extra-individual-constant , extra-relation-constant and extra-function-constant strings are given in section 3..

$n r$	-axiom	string or mater
A1	Extensionality ${ }^{1)}$	$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\left[\sigma_{1}=\sigma_{2}\right] \leftrightarrow\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \leftrightarrow\left[\sigma_{3} \in \sigma_{2}\right]\right]\right]\right]\right]$
A2	Regularity ${ }^{2}$	$\forall \sigma_{1}\left[\left[\exists \sigma_{2}\left[\sigma_{2} \in \sigma_{1}\right]\right] \rightarrow\left[\exists \sigma_{2}\left[\left[\sigma_{2} \in \sigma_{1}\right] \wedge\left[\neg\left[\exists \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \wedge\left[\sigma_{3} \in \sigma_{2}\right]\right]\right]\right]\right]\right]\right]$
A3	Selectivity ${ }^{3)}$	```\forall\sigma1[[[\|\sigma2[[\sigma2 水]] [\exists\sigma3[[\sigma3\in\sigma2]]]]^ [\forall\mp@subsup{\sigma}{2}{}[\forall\mp@subsup{\sigma}{3}{}[\forall\mp@subsup{\sigma}{4}{}[[[[\mp@subsup{\sigma}{2}{}\in\mp@subsup{\sigma}{1}{}]^[\mp@subsup{\sigma}{3}{}\in\mp@subsup{\sigma}{1}{}]]\^[\sigma4\in\mp@subsup{\sigma}{2}{}]]^[\mp@subsup{\sigma}{4}{}\in\mp@subsup{\sigma}{3}{}]]]]]]} [\exists\sigma2[\forall\sigma3[[[\sigma3\in\sigma1]->[\exists\sigma4[[[[\sigma4\in\sigma2]^[\sigma4\in\sigma3]]^ [\forall\sigma5[[[\sigma5\in\sigma2]^[\sigma5\in\sigma3]]->[\sigma5=\sigma4]]]]]]]]]```
A4	Nilition ${ }^{4}$	$\exists \sigma_{0}\left[\forall \sigma_{1}[\neg[\sigma 1 \in \sigma 0]]\right]$
A5	Parition ${ }^{5}$	$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\exists \sigma_{0}\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{0}\right] \leftrightarrow\left[\left[\sigma_{3}=\sigma_{1}\right] \vee\left[\sigma_{3}=\sigma_{2}\right]\right]\right]\right]\right]\right]$
A6	Unition ${ }^{6}$	$\forall \sigma_{1}\left[\exists \sigma_{0}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in \sigma_{0}\right] \leftrightarrow\left[\exists \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \wedge\left[\sigma_{2} \in \sigma_{3}\right]\right]\right]\right]\right]\right]$
A7	Potention ${ }^{7)}$	$\forall \sigma_{1}\left[\exists \sigma_{0}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in \sigma_{0}\right] \leftrightarrow\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{2}\right] \rightarrow\left[\sigma_{3} \in \sigma_{1}\right]\right]\right]\right]\right]\right]$
A8	Recursion ${ }^{8)}$ $\sigma 0$ from σ_{1}, σ_{2} nullary and unary UNEX-formulo strings iteration from start and no subset with same feature	 [sentence($\left.\left.\forall \sigma_{0}\left[\sigma_{1}\right]\right)\right] \wedge\left[\right.$ sentence ($\left.\left.\left.\forall \sigma_{0}\left[\forall \sigma_{1}\left[\sigma_{2}\right]\right]\right)\right]\right] \wedge$ [variable($\sigma 3$)]]^[variable($\sigma 4$)]]^[variable($\sigma 5)]$]^ [sentence($\left.\left.\left.\forall \sigma 0\left[\forall \sigma 3\left[\forall \sigma_{4}\left[\forall \sigma_{5}\left[\sigma_{1}\right]\right]\right]\right]\right)\right]\right] \wedge$ [sentence($\left.\left.\left.\forall \sigma_{0}\left[\forall \sigma_{1}\left[\forall \sigma_{3}\left[\forall \sigma_{4}\left[\forall \sigma_{5}\left[\sigma_{2}\right]\right]\right]\right]\right]\right)\right]\right] \rightarrow$ $\left[\right.$ Axiom $\left(\left[\left[\exists \sigma_{0}\left[[\sigma 1] \wedge\left[\forall \sigma_{3}\left[\left[\left(\sigma 1 ; \sigma_{0} / \sigma_{3}\right)\right] \rightarrow[\sigma 3=\sigma 0]\right]\right]\right]\right] \wedge\right.\right.$ $\left.\left[\forall \sigma_{1}\left[\exists \sigma_{0}\left[\left[\sigma_{2}\right] \wedge\left[\forall \sigma_{3}\left[\left[\left(\sigma_{2} ; \sigma_{0} / \sigma_{3}\right)\right] \rightarrow\left[\sigma_{=}=\sigma 0\right]\right]\right]\right]\right]\right]\right] \rightarrow\left[\exists \sigma_{0}[\right.$ $\left[\forall \sigma_{3}\left[\left[\left[\left[\sigma_{\sigma} \in \sigma_{0}\right] \wedge\left[\left(\sigma ; \sigma_{0} \int \sigma_{3}\right)\right]\right] \vee\left[\exists \sigma_{1}\left[\left[\sigma 1 \in \sigma_{0}\right] \wedge\left[\left(\sigma_{2} ; \sigma_{0} \int \sigma_{3}\right)\right]\right]\right]\right] \wedge\right.\right.$ $\left[\forall \sigma_{4}\left[\left[\left[\forall \sigma_{5}\left[\left[\sigma_{5} \in \sigma_{4}\right] \rightarrow\left[\sigma_{5} \in \sigma_{0}\right]\right]\right] \wedge\left[\forall \sigma_{3}\left[\left[\left[\sigma_{3} \in \sigma_{4}\right] \wedge\left[\left(\sigma_{1} ; \sigma_{0} \int \sigma_{3}\right)\right]\right] \vee\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left[\exists \sigma_{1}\left[\left[\sigma_{1} \in \sigma_{4}\right] \wedge\left[\left(\sigma_{2} ; \sigma_{0} \delta \sigma_{3}\right)\right]\right]\right]\right]\right]\right] \rightarrow\left[\sigma_{4}=\sigma_{0}\right]\right]\right]\right]\right]\right)\right]\right]\right]\right]\right]\right]$
A9	Separation ${ }^{9)}$ intersection $\sigma 0$ by scheme σ and relation given by formula σ^{2}	```\forall\sigma1[\forall\sigma2[\forall\sigma3[\forall\sigma4[\forall\sigma5[[[[[[scheme(\sigma1)]^[formula(\sigma2)]]^[variable(\sigma3)]]^[omny(\sigma4)]]^ [sentence(}\mp@subsup{\sigma}{4}{}[\mp@subsup{\sigma}{1}{}=\mp@subsup{\sigma}{1}{}]\wedge[\forall\mp@subsup{\sigma}{0}{}[\forall\mp@subsup{\sigma}{3}{}[\mp@subsup{\sigma}{2}{\prime}]]\mp@subsup{\sigma}{5}{\prime})]] [Axiom(}\mp@subsup{\sigma}{4}{}\exists\mp@subsup{\sigma}{0}{}[\forall\mp@subsup{\sigma}{3}{}[[\sigma3\in\sigma0]\leftrightarrow[[\sigma3\in\mp@subsup{\sigma}{1}{}]^[\mp@subsup{\sigma}{2}{\prime}]]]] \mp@subsup{\sigma}{5}{\prime})]]]]]```
A10u	Unaryreplacition ${ }^{10)}$	```\forall\sigmal[[[sentence(}\forall\mp@subsup{\sigma}{1}{\prime[\forall\sigma0[\sigmal]])]^ [sentence(\forall\sigma0[\forall\mp@subsup{\sigma}{1}{}[\forall\mp@subsup{\sigma}{2}{}[\forall\mp@subsup{\sigma}{3}{}[\mp@subsup{\sigma}{1}{}]]]])]]}``` ```[\forall\sigma2[\exists\mp@subsup{\sigma}{3}{}[\forall\sigma0[[\sigma0\in\sigma3]\leftrightarrow[\exists\mp@subsup{\sigma}{1}{}[[\sigma1\in\mp@subsup{\sigma}{2}{\prime}]^[\sigma1]]]]]]])]]```
A10m	Multaryreplacition image $\sigma 3$ of a set $\sigma 2$ under $\sigma 1$ UNEX-formulo	$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\forall \sigma_{3}\left[\left[\left[\left[\left[\operatorname{omny}\left(\sigma_{2}\right)\right] \wedge\left[\right.\right.\right.\right.\right.\right.\right.$ sentence $\left.\left.\left(\sigma_{2} \forall \sigma_{1}\left[\forall \sigma_{0}\left[\sigma_{1}\right]\right] \sigma_{3}\right)\right]\right] \wedge$ [formulo(σ)]] $\left[\right.$ [sentence ($\left.\left.\left.\sigma_{2} \forall \sigma_{0}\left[\forall \sigma_{1}\left[\forall \sigma_{2}\left[\forall \sigma_{3}\left[\sigma_{1}\right]\right]\right]\right] \sigma_{3}\right)\right]\right] \rightarrow$ $\left[\right.$ Axiom ($\sigma_{2}\left[\forall \sigma_{1}\left[\exists \sigma_{0}\left[\left[\sigma_{1}\right] \wedge\left[\forall \sigma_{2}\left[\left[\left(\sigma_{1} ; \sigma_{0} / \sigma_{2}\right)\right] \rightarrow\left[\sigma_{2}=\sigma_{0}\right]\right]\right]\right]\right]\right] \rightarrow$ $\left.\left.\left.\left.\left.\left[\forall \sigma_{2}\left[\exists \sigma_{3}\left[\forall \sigma_{0}\left[\left[\sigma 0 \in \sigma_{3}\right] \leftrightarrow\left[\exists \sigma_{1} 1\left[\sigma_{1} \in \sigma_{2}\right] \wedge\left[\sigma_{1}\right]\right]\right]\right]\right]\right] \sigma_{3}\right)\right]\right]\right]\right]$

Table 2 Axiom strings and matres

The order is chosen so that the three metaproperty axioms are followed by four UNEX-formulo strings, followed by four Axiom matres, where the last ones treat unary and multary cases separately.

If there are redundancies in the above Axiom table, so what: just replace them by the simpler version.
${ }^{1)}$ sometimes called 'extension' ${ }^{2)}$ often called 'foundation' ${ }^{3)}$ usually called 'selection' or 'choice', sometimes replaced by the weaker 'well-ordering' ${ }^{4)}$ nullary - usually 'empty set' ${ }^{5)}$ binary - usually called 'pairing' ${ }^{6)}$ unary - usually one of the two meanings of 'union' ${ }^{7 \text { 7 }}$ unary - usually called 'power set' ${ }^{8)}$ generalizes what is usually called 'infinity' ${ }^{9)}$ often called 'specification' ${ }^{10)}$ usually called 'replacement'

There are 7 constructions of sets, 4 by Axiom strings ($\boldsymbol{A} 4$ to $\boldsymbol{A} 7$ for nilition, parition, unition and potention) and 3 by $\boldsymbol{A x i o m}$ matres ($\boldsymbol{A 8}$ to $\boldsymbol{A 1 0}$ for recursion, replacition and separation) with uniqueness by $\boldsymbol{A 1}$.

Recursion-axiom mater $\boldsymbol{A} \mathbf{8}$ is taken more general than usual. Rather than starting from the empty set and natural number succession it is generalized in the following sense: start from any set given by a UNEX-nullary-formulo σ iterate by a unary function that is given by a UNEX-unary-formulo $\sigma 2$. Perhaps one should generalize it even more: higher arities for $\sigma 2$? The usual 'Infinity' Axiom is just one special case that relates to recursion where function succession (' σ) of section 3 is used that produces von-Neumann natural numbers (conventionally denoted as ω) starting from the empty set.


```
[[\sigma4\in\sigma2]\vee[\sigma4=\sigma2]]]]]]]]]]]
```

or with the definitions for empty set on (conventionally denoted as \varnothing) and succession (' σ)
$\exists \sigma_{1}\left[\left[\sigma n \in \sigma_{1}\right] \wedge\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in \sigma_{1}\right] \rightarrow\left[\left(\prime \sigma_{2}\right) \in \sigma_{1}\right]\right]\right]\right]$
Separation-axiom mater $\boldsymbol{A 9}$ allow for a more general choice for $\sigma 1$ (a scheme $\sigma 1$ depending on variable $\sigma 1$ and more variable strings) and of formula σ_{2} that depends on variable σ_{1} as well. It makes definition of functions simpler, if it is not at all necessary.

The possibilities of mater $\boldsymbol{A 9}$ include the simple reduced case that is kind of a prototype in usual introductions of axiomatic set theory. It states the existence of a set $\sigma 0$ given by a unary formula $\sigma 2$ (with free variable σ_{3} and no variable $\sigma 0$ and $\sigma 1$) with respect to a given set $\sigma 1$:

```
Axiom( }\forall\mp@subsup{\sigma}{1}{}[\exists\mp@subsup{\sigma}{0}{}[\forall\mp@subsup{\sigma}{3}{}[[[\mp@subsup{\sigma}{3}{}\in\mp@subsup{\sigma}{0}{\prime}]\leftrightarrow[[[\mp@subsup{\sigma}{3}{}\in\mp@subsup{\sigma}{1}{}]^[ \mp@subsup{\sigma}{2}{\prime}]]]]]
```

Replacition-axiom matres $\boldsymbol{A 1 0}$ express that 'the image of a set $\sigma 2$ under a function given by a UNEXformulo σ_{1} is a set σ_{3}. One has to distinguish the unary and the multary case $\mathbf{A 1 0 u}$ and $\boldsymbol{A 1 0 m}$. The functions are represented by UNEX-formulo strings. As finite strings UNEX-formulo are denumerable but not enumerable (enumerable meaning effectively denumerable); unique existence has to be shown in every case. How does that relate to non-denumerable sets? After all axiomatic set theory was introduced to allow for a gargantuan universum of infinities far beyond the denumerable! But that is another problem that will not be treated here.

It is convenient to introduce extra-function-constant, extra-individual-constant and extra-relationconstant strings, some of them are well-known from naive set theory. This is done in the following three sections.

3 Introduction of extra-function-constant strings

It is convenient to introduce extra-function-constant strings.

$n r$	name		definition	ari	
implicit from Axiom A5, A6, A7					
DF1	parition	$(\sigma \mid \sigma)$	$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in\left(\sigma_{1} \mid \sigma_{2}\right)\right] \leftrightarrow\left[\left[\sigma_{3}=\sigma_{1}\right] \vee\left[\sigma_{3}=\sigma_{2}\right]\right]\right]\right]\right]$	2	
DF2	unition	$(\cup \sigma)$	$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in\left(\cup \sigma_{1}\right)\right] \leftrightarrow\left[\exists \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \wedge\left[\sigma_{2} \in \sigma_{3}\right]\right]\right]\right]\right]$	1	
DF3	potention	(介б)	$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in\left(\uparrow \sigma_{1}\right)\right] \leftrightarrow\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{2}\right] \rightarrow\left[\sigma_{3} \in \sigma_{1}\right]\right]\right]\right]\right]$	1	
explicit					
DF4	singlition ${ }^{1)}$	($\mid \sigma$)	($\sigma 1 \mid \sigma 1$)	1	
DF5	singlation	(\|	б)	$\left(\sigma_{1} \mid(\mid \sigma 1)\right)$	1
DF6	oparition ${ }^{2)}$	($\sigma-\sigma$)	$\left(\left(\mid \sigma_{1}\right) \mid\left(\sigma_{1} \mid \sigma_{2}\right)\right)$	2	
DF7	union ${ }^{3)}$	$(\sigma \cup \sigma)$	$\left(\cup\left(\sigma_{1} \mid \sigma_{2}\right)\right.$)	2	
DF8	succession	(' σ)	$\left(\cup\left(\left\|\mid \sigma_{1}\right)\right)=\left(\cup\left(\sigma_{1} \mid\left(\mid \sigma_{1}\right)\right)\right)=\left(\sigma_{1} \cup\left(\mid \sigma_{1}\right)\right)\right.$	1	
implicit from unary case of Separation-axiom mater					
DF9	intersectition	$(\cap \sigma)$	$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in\left(\cap \sigma_{1}\right)\right] \leftrightarrow\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \rightarrow\left[\sigma_{2} \in \sigma_{3}\right]\right]\right]\right.\right.$	1	
DF10	imponition	$(\nabla \sigma)$	$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in\left(\bigcirc \sigma_{1}\right)\right] \leftrightarrow\left[\exists \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \wedge\left[\sigma_{2}=\left(\mid \sigma_{3}\right)\right]\right]\right]\right]\right]$	1	
implicit from binary case of Separation-axiom mater					
DF11	intersection	$(\sigma \cap \sigma)$	$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in\left(\sigma_{1} \cap \sigma_{2}\right)\right] \leftrightarrow\left[\left[\sigma_{3} \in \sigma_{1}\right] \wedge\left[\sigma_{3} \in \sigma_{2}\right]\right]\right]\right]\right.$	2	
DF12	complemention	(σ / σ)	$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in\left(\sigma_{1} / \sigma_{2}\right)\right] \leftrightarrow\left[\left[\sigma_{3} \in \sigma_{1}\right] \wedge\left[\neg\left[\sigma_{3} \in \sigma_{2}\right]\right]\right]\right]\right]\right]$	2	
DF13	production	$(\sigma \times \sigma)$	$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in\left(\sigma_{1} \times \sigma_{2}\right)\right] \leftrightarrow\right.\right.\right.$ $\left.\left.\left.\left[\exists \sigma_{4}\left[\exists \sigma_{5}\left[\left[\left[\sigma 4 \in \sigma_{1}\right] \wedge\left[\sigma 5 \in \sigma_{2}\right]\right] \wedge[\sigma 3=(\sigma 4-\sigma 5)]\right]\right]\right]\right]\right]\right]$	2	
			explicit from implicit above		
DF14	tri-production	($\sigma \times \sigma \times \sigma$)	$(\sigma 1 \times(\sigma 2 \times \sigma 3))$	3	
DF15	bi-potentiation	$(\sigma \times)$	$(\sigma 1 \times \sigma 1)$	1	
DF16	tri-potentiation	$(\sigma \times x)$	$(\sigma 1 \times(\sigma 1 \times \sigma 1))$	1	
DF18	diag-production	($\times \sigma$)	implicit from unary case of Separation-axiom mater $\forall \sigma_{1}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in\left(\times \sigma_{1}\right)\right] \leftrightarrow\left[\left[\sigma_{2} \in\left(\sigma_{1 \times}\right)\right] \wedge\left[\exists \sigma_{3}\left[\sigma_{2}=\left(\sigma_{3}-\sigma_{3}\right)\right]\right]\right]\right]\right]$	1	

Table 3 Definition of extra-function-constant strings
The Extensionality-axiom A1 is necessary for uniqueness of functions in the following.
Definition in full detail for binary function parition $(\sigma \mid \sigma)$ as there is $\boldsymbol{A} 5$
$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\exists \sigma_{0}\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{0}\right] \leftrightarrow\left[\left[\sigma_{3}=\sigma_{1}\right] \vee\left[\sigma_{3}=\sigma_{2}\right]\right]\right]\right]\right]\right]$ with formulo $\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{0}\right] \leftrightarrow\left[\left[\sigma_{3}=\sigma_{1}\right] \vee\left[\sigma_{3}=\sigma_{2}\right]\right]\right]$ then there is unique existence by Axiom mater of implicit definition of multary functions:
$\exists \sigma_{1}(\sigma ; \sigma)\left[\forall \sigma_{1}\left[\forall \sigma_{2}\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{0}\right] \leftrightarrow\left[\left[\sigma_{3}=\sigma_{1}\right] \vee\left[\sigma_{3}=\sigma_{2}\right]\right]\right]\right]\right]\right]$
and one can introduce $(\sigma \mid \sigma)$ for $\sigma 1(\sigma ; \sigma)$ and define it by
$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in\left(\sigma_{1} \mid \sigma_{2}\right)\right] \leftrightarrow\left[\left[\sigma_{3}=\sigma_{1}\right] \vee\left[\sigma_{3}=\sigma_{2}\right]\right]\right]\right]\right.$
Definition in full detail for unary function unition $(\cup \sigma)$ as there is $\boldsymbol{A 6}$
$\forall \sigma_{1}\left[\exists \sigma_{0}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in \sigma_{0}\right] \leftrightarrow\left[\exists \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \wedge\left[\sigma_{2} \in \sigma_{3}\right]\right]\right]\right]\right]\right]$
then there is unique existence by $\boldsymbol{A x i o m}$ mater of implicit definition of unary functions:
$\exists \sigma_{1}(\sigma)\left[\forall \sigma_{1}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in \sigma_{1}\left(\sigma_{1}\right)\right] \leftrightarrow\left[\exists \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \wedge\left[\sigma_{2} \in \sigma_{3}\right]\right]\right]\right]\right]\right]$
and one can introduce $(\cup \sigma)$ for $\sigma 1(\sigma)$ and define it by
$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in\left(\cup \sigma_{1}\right)\right] \leftrightarrow\left[\exists \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \wedge\left[\sigma_{2} \in \sigma_{3}\right]\right]\right]\right]\right]$

[^0]Unary function potention ($\uparrow \sigma$) is also obtained by implicit definition with the UNEX-formulo from $\boldsymbol{A} 7$.
The following are definitions from unary case of Separation-axiom mater
$\forall \sigma_{1}\left[\exists \sigma_{0}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in \sigma_{0}\right] \leftrightarrow\left[\left[\sigma_{2} \in \sigma_{1}\right] \wedge\left[\sigma_{2}\right]\right]\right]\right]\right] \quad$ with sentence $\left(\forall \sigma_{1}\left[\left[\sigma_{1}=\sigma_{1}\right] \wedge\left[\forall \sigma_{2}\left[\sigma_{2}\right]\right]\right]\right)$
for intersectition $(\cap \sigma)$ choose $\left(\cup \sigma_{1}\right)$ as σ_{1} and $\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \rightarrow\left[\sigma_{2} \in \sigma_{3}\right]\right]$ as binary σ_{2}
$\left.\left.\forall \sigma_{1}\left[\exists \sigma_{0}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in \sigma_{0}\right] \leftrightarrow\left[\left[\sigma_{2} \in\left(\cup \sigma_{1}\right)\right] \wedge\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \rightarrow\left[\sigma_{2} \in \sigma_{3}\right]\right]\right]\right]\right]\right]\right]\right]\right]$
$\left.\left.\forall \sigma_{1}\left[\exists \sigma_{0}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in \sigma_{0}\right] \leftrightarrow\left[\left[\exists \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \wedge\left[\sigma_{2} \in \sigma_{3}\right]\right]\right]\right] \wedge\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \rightarrow\left[\sigma_{2} \in \sigma_{3}\right]\right]\right]\right]\right]\right]\right]\right]$
$\forall \sigma_{1}\left[\exists \sigma_{0}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in \sigma_{0}\right] \leftrightarrow\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \rightarrow\left[\sigma_{2} \in \sigma_{3}\right]\right]\right]\right]\right]\right]$
for imponition $(\diamond \sigma)$ choose $\left(\cup \sigma_{1}\right)$ as σ_{1} and $\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \rightarrow\left[\sigma_{2}=\left(\mid \sigma_{3}\right)\right]\right]$ as binary σ_{2}
$\forall \sigma_{1}\left[\exists \sigma_{0}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in\left(\vee \sigma_{1}\right)\right] \leftrightarrow\left[\exists \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \wedge\left[\sigma_{2}=(\mid \sigma 3)\right]\right]\right]\right]\right]\right]$
The following are definitions from binary case of Separation-axiom mater $\forall \sigma_{1}\left[\forall \sigma_{2}\left[\exists \sigma_{0}\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{0}\right] \leftrightarrow\left[\left[\sigma_{3} \in \sigma_{1}\right] \wedge\left[\sigma_{2}\right]\right]\right]\right]\right]\right]$ with sentence $\left(\forall \sigma_{1}\left[\forall \sigma_{2}\left[\left[\sigma_{1}=\sigma_{1}\right] \wedge\left[\forall \sigma_{3}\left[\sigma_{2}\right]\right]\right]\right.\right.$)
for intersection ($\sigma \cap \sigma$) choose σ_{1} as σ_{1} and $\sigma_{3} \in \sigma_{2}$ as ternary σ_{2}
for complemention (σ / σ) choose σ_{1} as σ_{1} and $\neg\left[\sigma 3 \in \sigma_{2}\right]$ as ternary σ_{2}
for production $(\sigma \times \sigma)$ choose $\left(\Uparrow\left(\Uparrow\left(\sigma_{1} \cup \sigma_{2}\right)\right)\right)$ as σ_{1} and $\exists \sigma_{4}\left[\exists \sigma_{5}\left[\left[\left[\sigma_{4} \in \sigma_{1}\right] \wedge\left[\sigma_{5} \in \sigma_{2}\right]\right] \wedge\left[\sigma_{3}=\left(\sigma_{4}-\sigma_{5}\right)\right]\right]\right]$ as ternary $\sigma 2$ and obtain
$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in\left(\sigma_{1} \times \sigma_{2}\right)\right] \leftrightarrow\left[\exists \sigma_{4}\left[\exists \sigma_{5}\left[\left[\left[\sigma_{4} \in \sigma_{1}\right] \wedge\left[\sigma_{5} \in \sigma_{2}\right]\right] \wedge\left[\sigma_{3}=\left(\sigma_{4}-\sigma_{5}\right)\right]\right]\right]\right]\right]\right]\right.$
It looks like using a sledgehammer to crack a nut, as the set $\left(\Uparrow\left(\Uparrow\left(\sigma_{1} \cup \sigma_{2}\right)\right)\right.$) is doubly infinite and one is using only the simplest subsets consisting of one or two members. But one cannot do it otherwise. The set $\left(\Uparrow\left(\Uparrow\left(\sigma_{1} \cup \sigma_{2}\right)\right)\right)$ contains all ordered pairs of members of the two sets σ_{1} and σ_{2} (and much more, but this is irrelevant as only a subset is aimed for).

4 Introduction of extra－individual－constant strings

The introduction of extra－individual－constant strings makes use of the above functions and contains implicit definitions，for the latter one has UNEX－nullary－formulo strings．

$n r$	name		definition	ari
DIO	nil	σ	implicit by Nilition－axiom A4	0
			$\forall \sigma_{1}\left[\neg\left[\sigma_{1} \in \sigma^{\prime}\right]\right]$	
			explicit from functions	
DI1	neumann－unus	ovu	（＇on）	0
DI2	cantor－duo	ocb	（｜（｜ \mid n））	0
D13	zermelo－quattuor	ozq		0
D14	fraenkel－tres	$\sigma \mathrm{ft}$	$(\Uparrow(\Uparrow(\Uparrow \sigma n))$ ）	0
	\ldots		the other ones accordingly	
			implicit by Recursion－axiom start on and	
DI11	neumann－natral	OVnl	iteration（＇σ ）	0
DI12	cantor－natral	$\sigma \mathrm{cnl}$	iteration（｜ O2）$^{\text {a }}$	0
DI13	zermelo－natral	Oznl	iteration $(\|\mid \sigma 2)$	0
DI14	fraenkel－natral	$\sigma f n 1$	iteration（介б2）	0
			explicit therefrom	
DI15	neumann－potential	ovnpo	（介ovnl）	0
DI16	cantor－potential	бcnpo	（介бcnl）	0

Table 4 Definition of extra－individual－constant strings
Definition in full detail：set neumann－natral ovnl of natural numbers，it is based on two UNEX－formulo strings for start $\sigma 1=\sigma 0=\sigma n$ and succession $\sigma_{2}=\sigma 0=(' \sigma 1)$ and from Recursion－axiom mater there is unique existence of its＇power－set＇obtained by potention（ $\uparrow \sigma \mathrm{cnl}$ ）；in conventional notation the von－ Neumann－set of natural numbers is called $\omega:\{\{ \},\{\{ \},\{\{ \}\}\},\{\{\{ \},\{\{ \}\}\},\{\{\{ \},\{\{ \}\}\}\}\}, \ldots\}$ with power－set $\mathbf{P}(\omega)$ ．

```
\exists\mp@subsup{\sigma}{0}{}[[[\sigman\in\mp@subsup{\sigma}{0}{\prime}]^[\forall\mp@subsup{\sigma}{2}{}[[\mp@subsup{\sigma}{2}{\prime=\sigman]}]\vee[\exists\mp@subsup{\sigma}{1}{}[[\mp@subsup{\sigma}{1}{}\in\mp@subsup{\sigma}{0}{\prime}]^[\sigma2=('\sigma1)]]]]]]^
[\forall\sigma3[[[[\forall\sigma4[[\sigma4\in\sigma3]->[\sigma4\in\sigma0]]]^^
[[\sigman\in\sigma3]^[\forall\mp@subsup{\sigma}{2}{}[[\sigma2=\sigman]\vee[\exists\mp@subsup{\sigma}{1}{}[[[\sigma1\in\mp@subsup{\sigma}{3}{}]^[\sigma2=('\sigma1)]]]]]]]]->[\sigma3=\sigma0]]]]
```

and by application of implicit definition（nullary case）one can introduce $\sigma v n l$ for $\sigma 0$ and define it by
$\left[[\sigma n \in \sigma v n 1] \wedge\left[\forall \sigma 2\left[[\sigma 2=\sigma n] \vee\left[\exists \sigma_{1}[[\sigma 1 \in \sigma v n l] \wedge[\sigma 2=(' \sigma 1)]]\right]\right]\right]\right] \wedge[\forall \sigma 3[$ $\left.\left.\left[\left[\forall \sigma_{4}\left[\left[\sigma_{4} \in \sigma_{3}\right] \rightarrow\left[\sigma_{4} \in \sigma_{0}\right]\right]\right] \wedge\left[\left[\sigma n \in \sigma_{3}\right] \wedge\left[\forall \sigma_{2}\left[\left[\sigma_{2}=\sigma n\right] \vee\left[\exists \sigma_{1}\left[\left[\sigma_{1} \in \sigma_{3}\right] \wedge\left[\sigma_{2}=\left(' \sigma_{1}\right)\right]\right]\right]\right]\right]\right]\right] \rightarrow\left[\sigma_{3}=\sigma v n 1\right]\right]\right]$

In the same way one can introduce cantor－natral $\sigma \mathrm{cn}$ of natural numbers and its＇power－set＇obtained by potention（介ocnl）；in conventional notation the Cantor－set is given as $\{\},\{\{ \}\},\{\{\{ \}\}\}, \ldots\}$ ． It is based on two UNEX－formulo strings for start $\sigma=\sigma_{0}=\sigma$ n and singlition $\sigma_{2}=\sigma_{0}=(\mid \sigma 1)$
$\left[[\sigma n \in \sigma c n 1] \wedge\left[\forall \sigma_{2}\left[\left[\sigma_{2}=\sigma n\right] \vee\left[\exists \sigma_{1}\left[\left[\sigma_{1} \in \sigma c n 1\right] \wedge\left[\sigma_{2}=\left(' \sigma_{1}\right)\right]\right]\right]\right]\right]\right] \wedge\left[\forall \sigma_{3}[\right.$
$\left.\left.\left[\left[\forall \sigma_{4}\left[\left[\sigma 4 \in \sigma_{3}\right] \rightarrow\left[\sigma 4 \in \sigma_{0}\right]\right]\right] \wedge\left[\left[\sigma n \in \sigma_{3}\right] \wedge\left[\forall \sigma 2\left[[\sigma 2=\sigma n] \vee\left[\exists \sigma_{1}[[\sigma 1 \in \sigma 3] \wedge[\sigma 2=(\mid \sigma 1)]]\right]\right]\right]\right]\right] \rightarrow[\sigma 3=\sigma c n 1]\right]\right]$
It is a matter of taste and convenience，what set one chooses to represent natural numbers．Usually it is von－Neumann＇s choice，but in the following simple considerations the simpler Cantor－set $\sigma \mathrm{cnl}$ is sufficient．

5 Introduction of extra-relation-constant strings

The definition of a relation-constant by a formula is straightforward. Depending on the arity of the formula one should enclose defining formula strings by $\forall \sigma_{1}[[\ldots] \leftrightarrow[\ldots]]$ or $\forall \sigma_{1}\left[\forall \sigma_{2}[[\ldots] \leftrightarrow[\ldots]]\right]$ or $\forall \sigma_{1}\left[\forall \sigma_{2}\left[\forall \sigma_{3}[[\ldots] \leftrightarrow[\ldots]]\right]\right]$ or $\forall \sigma_{1}\left[\forall \sigma_{2}\left[\forall \sigma_{3}\left[\forall \sigma_{4}[[\ldots] \leftrightarrow[\ldots]]\right]\right]\right]$ resp.

$n r$	name		definition by formula	$a r$
DR1	equi-subity	$\sigma \subseteq \sigma$	$\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{2}\right] \rightarrow\left[\sigma_{3} \in \sigma_{1}\right]\right]$	2
DR2	subity (genuine subset)	$\sigma \subset \sigma$	[$\left.\sigma_{2} \subseteq \sigma_{1}\right] \wedge\left[\sigma_{2} \neq \sigma_{1}\right]$	2
DR3	oparity	$\mathrm{OP}(\sigma)$	$\forall \sigma_{2}\left[\left[\sigma_{2} \in \sigma_{1}\right]\right] \rightarrow\left[\exists \sigma_{3}\left[\exists \sigma_{4}\left[\sigma_{2}=\left(\sigma_{3}-\sigma_{4}\right)\right]\right]\right]$	1
DR4	productivity	PD($\sigma ; \sigma ; \sigma)$	$\exists \sigma_{4}\left[\exists \sigma^{2}\left[\left[\left[\sigma_{4} \in \sigma_{1}\right] \wedge\left[\sigma_{5} \in \sigma_{2}\right]\right] \wedge\left[\sigma_{3}=(\sigma 4-\sigma 5)\right]\right]\right]$	3
DR11	potentiality ordered	PT($\sigma ; \sigma$)	$\left[\sigma_{2} \in\left(\right.\right.$ 介 $\left.\left.\sigma_{1}\right)\right] \leftrightarrow\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{2}\right] \rightarrow\left[\sigma_{3} \in \sigma_{1}\right]\right]\right]$	2
DR12	orelity ordered-pair relation	OR($\sigma ; \sigma ; \sigma$)	```[\sigma3\in(介(\sigma1\times\sigma2))]\leftrightarrow[\forall\sigma4[[\sigma4\in\sigma3]-> [\exists\sigma5[\exists\sigma6[[[\sigma5\in\sigma1]^[\sigma6\in\sigma2]]^[\sigma4=(\sigma5-\sigma6)]]]]]]```	3
DR13	auto-orelity with respect to $\sigma 1$	AOR($\sigma ; \sigma$)	$\begin{aligned} & {\left[\sigma_{2} \in(\Uparrow(\sigma 1 \times))\right] \leftrightarrow\left[\forall \sigma _ { 3 } \left[\left[\sigma 3 \in \sigma_{2}\right] \rightarrow\right.\right.} \\ & \left.\left.\left[\exists \sigma 4\left[\exists \sigma 5\left[\left[\left[\sigma 4 \in \sigma_{1}\right] \wedge\left[\sigma 5 \in \sigma_{1}\right]\right] \wedge[\sigma 3=(\sigma 4-\sigma 5)]\right]\right]\right]\right]\right] \end{aligned}$	2
DR21	jectivity with respect to $\sigma 1$ $\sigma 2$	JR($\sigma ; \sigma ; \sigma$)	$\left[\mathrm{OR}\left(\sigma_{1} ; \sigma_{2} ; \sigma_{3}\right)\right] \wedge$ $\left[\forall \sigma_{4}\left[\left[\sigma_{4} \in \sigma_{1}\right] \rightarrow\left[\exists \sigma_{5}\left[\left[\left[\sigma 5 \in \sigma_{2}\right] \wedge\left[\left(\sigma_{4}-\sigma 5\right) \in \sigma_{3}\right)\right]\right] \wedge\right.\right.\right.$ $\left.\left.\left.\left.\left.\left[\forall \sigma 6\left[\left[\left[\sigma 6 \in \sigma_{2}\right] \wedge\left[\left(\sigma_{4}-\sigma 5\right) \in \sigma_{3}\right)\right]\right] \rightarrow[\sigma 6=\sigma 5]\right]\right]\right]\right]\right]\right]$	3
DR22	injectivity	IJR($\sigma ; \sigma ; \sigma$)	$[\operatorname{JR}(\sigma 1 ; \sigma 2 ; \sigma 3)] \wedge[\forall \sigma 4[\forall \sigma 5[\forall \sigma 6[\forall \sigma 7[[[[[][[$ $\left.\left.\left.\left.\left[\sigma 4 \in \sigma_{1}\right] \wedge\left[\sigma 5 \in \sigma_{1}\right]\right] \wedge[\sigma 4 \neq \sigma 5]\right] \wedge\left[\sigma 6 \in \sigma_{2}\right]\right] \wedge\left[\sigma 7 \in \sigma_{2}\right]\right] \wedge$ $[(\sigma 4-\sigma 6) \in \sigma 3)]] \wedge[(\sigma 5-\sigma 7) \in \sigma 3)]] \rightarrow[\sigma 6 \neq \sigma 7]]]]]]$	3
DR23	surjectivity	SJR(б; $\sim ; \sigma$)	$\begin{aligned} & {\left[\operatorname{JR}\left(\sigma_{1} ; \sigma 2 ; \sigma_{3}\right)\right] \wedge} \\ & \left.\left[\forall \sigma 4\left[[\sigma 4 \in \sigma 2] \rightarrow\left[\exists \sigma_{5}\left[\left[\sigma 5 \in \sigma_{1}\right] \wedge[(\sigma 5-\sigma 4) \in \sigma 3)\right]\right]\right]\right]\right] \end{aligned}$	3
DR24	bijectivity	$\operatorname{BJR}(\sigma ; \sigma ; \sigma)$	$[\operatorname{IJR}(\sigma 1 ; \sigma 2 ; \sigma 3)] \wedge\left[S J R\left(\sigma 1 ; \sigma 2 ; \sigma_{3}\right)\right]$	3
DR31	auto-jectivity	AJR($\sigma ; \sigma$)	JR($\sigma 1 ; \sigma 1 ; \sigma 2)$	2
DR32	DR33 DR34		auto-injectivity, auto-surjectivity and auto-bijectivity accordingly	2
DR35	auto-ject-composity	AJC($\sigma ; \sigma ; \sigma ; \sigma)$	set σ_{1} with auto-injectivities $\sigma 2$ and $\sigma 3$ composed to produce σ_{4}	4
DR41	card-minor-equality	$\sigma\{\sim \sigma$	$\exists \sigma_{3}\left[\operatorname{SJR}\left(\sigma_{2} ; \sigma_{1} ; \sigma_{3}\right)\right]$ order relation	2
DR42	card-equality	$\sigma \sim \sigma$	$\left[\exists \sigma_{3}\left[\operatorname{SJR}\left(\sigma_{1} ; \sigma_{2} ; \sigma_{3}\right)\right]\right] \wedge\left[\exists \sigma_{3}\left[\operatorname{SJR}\left(\sigma 2 ; \sigma_{1} ; \sigma_{3}\right)\right]\right]$ or $\exists \sigma_{3}\left[\mathrm{BJR}\left(\sigma 1 ; \sigma_{2} ; \sigma_{3}\right)\right]$ equivalence relation	2
DR43	card-minority	$\sigma\{\sigma$	$\left[\sigma_{1}\left\{\sim \sigma_{2}\right] \wedge\left[\neg\left[\sigma_{1} \sim \sigma_{2}\right]\right]\right.$ or $\left[\exists \sigma_{3}\left[\operatorname{SJR}\left(\sigma 2 ; \sigma_{1} ; \sigma_{3}\right)\right]\right] \wedge\left[\neg\left[\exists \sigma_{3}\left[\operatorname{SJR}\left(\sigma 1 ; \sigma_{2} ; \sigma_{3}\right)\right]\right]\right]$	2
DR44	ordi-minor-equality	$\sigma\} \sim \sim \sigma$		2
DR45	ordi-equality	$\sigma \sim \sim \sigma$		2
DR46	ordi-minority	$\sigma\} \sigma$		2
DR51	finity	$\perp \sigma$	$\exists \sigma_{2}\left[\left[\sigma_{2} \in \sigma \mathrm{cn} 1\right] \wedge\left[\sigma_{1} \sim \sigma_{2}\right]\right]$	1
DR52	aleph-nullity	\# σ	O1~ 10 cnl	1
DR53	aleph-unity	\#\# σ	O1~ σ cnpo	1
DR61	transitivity	TRANSO(σ)	$\forall \sigma_{2}\left[\forall \sigma_{3}\left[\left[\left[\sigma_{2} \in \sigma_{1}\right] \wedge\left[\sigma_{3} \in \sigma_{2}\right]\right] \rightarrow\left[\sigma_{3} \in \sigma_{1}\right]\right]\right]$	1
DR62	connexity	CONNO(σ)	$\forall \sigma_{2}\left[\forall \sigma_{3}\left[\left[\left[\sigma_{2} \in \sigma_{1}\right] \wedge\left[\sigma_{3} \in \sigma_{1}\right]\right] \rightarrow\left[\left[\sigma_{2} \in \sigma_{3}\right] \vee\left[\sigma_{3} \in \sigma_{2}\right]\right]\right]\right]$	1
DR63	minimality	MINDO(σ)	$\exists \sigma_{2}\left[\left[\sigma_{2} \in \sigma_{1}\right] \wedge\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{1}\right] \rightarrow\left[\left[\sigma_{3}=\sigma_{2}\right] \vee\left[\sigma_{2} \in \sigma_{3}\right]\right]\right]\right]\right]$	1
DR64	fundamentality	FUNDO(σ)	$\forall \sigma_{2}\left[\left[\sigma_{2} \subseteq \sigma_{1}\right)\right] \rightarrow\left[\exists \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{2}\right] \wedge\left[\forall \sigma 4\left[\left[\sigma_{4} \in \sigma_{2}\right] \rightarrow\right.\right.\right.\right.$ $[[\sigma 4=\sigma 3] \vee[\sigma 3 \in \sigma 4]]]]]]]$	1
DR65	totality	TOTO(σ)	[TRANSO($\sigma 1$)]^[CONNO($\sigma 1$)]	1
DR66	limitality	LIMO(σ)	$\left[\operatorname{TOTO}\left(\sigma_{1}\right)\right] \wedge\left[\operatorname{MINDO}\left(\sigma_{1}\right)\right]$	1
DR67	ordinality	ORDIO(σ)	[TOTO(σ^{\prime}) $] \wedge\left[\mathrm{FUNDO}\left(\sigma_{1}\right)\right]$	1
DR68	cardinality	CARDIO(σ)	$\left.\left.\left[\mathrm{ORDIO}\left(\sigma_{1}\right)\right] \wedge\left[\neg\left[\exists \sigma_{2}\left[\left[\sigma_{2} \in \sigma_{1}\right] \wedge\left[\sigma_{1} \sim \sigma_{2}\right]\right]\right]\right]\right]\right]$	1

Table 5 Definition of extra-relation-constant strings

Wherever such a relation is used in a string σ_{2} it can be replaced by the formula σ_{1} where one only has to keep in mind to adapt the bound variable strings in the formula σ such that the replacement is compatible $\sigma_{1} \sim \sigma_{2}$ meaning that no variable is free in one and bounded in the other string.

One can only talk about sets in the abstract calcule of sigma , so all statements have to be reduced to talking about sets. E.g. there are no functions except ones that can be introduced via extra-functionconstant strings as it was done in table 3 . No quantion is possible with respect to functions and relations, this would only posible with second-order logic e.g. $\forall \sigma_{1}(\sigma)$ [or $\exists_{2}(\sigma)$ [. However, making use of oparition ($\sigma-\sigma$) one can represent functions and relations as sets that have special features. A unary function of mapping a set σ_{1} to its image σ_{2} is called jection, it is represented by a set σ_{3} that fulfills the jection relation $\mathrm{JR}\left(\sigma 1 ; \sigma_{2} ; \sigma_{3}\right)$. One can define functions of any arity in a similar fashion, e.g. a binary mapping of two sets σ_{1} and σ_{2} to its image set σ_{3} is represented by a set σ_{4} that fulfills the binary mapping relation $\operatorname{BMR}\left(\sigma_{1} ; \sigma_{2} ; \sigma_{3} ; \sigma_{4}\right)$. This method corresponds exactly to the UNEX-formulo method as introduced in section 1 ; existence has to be expressed as well as uniqueness. Notice that features of functions are given as extra-relation-constant strings. All functions represented by sets are partial (also called 'conditioned') in the sense that they are not defined for all sets.

The opening line of this section was 'the definition of a relation-constant by a formula is straightforward'. For the above examples this is indeed the case. However, in section this statement will be revisited.

6 Cardinality and diagonalization

Do not mix up the two different appearances of functions in axiomatic set theory as it was already mentioned in sections 3 and 5 .

On one side there are functions that are introduced by function-constant strings like e.g. $(\sigma \mid \sigma),(\cup \sigma)$, $(\Uparrow \sigma),(' \sigma)$ or $(\sigma-\sigma)$.

On the other side functions can be represented as sets making use of oparition ($\sigma-\sigma$) and apply the UNEX-formulo method as introduced in section 1. These sets represent functions mapping one set to another, an origin and an image set. Some necessary classifications are listed as extra-relation-constant strings in table 5 . The definitions contain three parts, the first part takes care of mapping the origin set to the image set, the second part guarantees the existence of an image value for every origin value and the third part is necessary for uniqueness. The functions that are introduced by function-constant strings cannot be represented as sets as they are defined for all sets and not for a given origin set.

At the heart of set theory is the concept of cardinality; after all, that is where Cantor started from. Talking about cardinality one does not always need a concept of so-called cardinal-numbers. Cardinality so far is just a façon de parler. One can compare sets with respect to their cardinality by binary relations: $\sigma \sim \sigma$ means that a set has less or equal cardinality with respect to another set, $\sigma \sigma$ means that a set has less cardinality with respect to another set, and $\sigma \sim \sigma$ means that two sets have equal cardinality. Appropriate order and equivalence relations are sufficient for the start of cardinality theory. For the proper definitions one has to deal with special jections.

Let's start with the extra-relation-constant $\mathrm{OR}(\sigma ; \sigma ; \sigma)$. The ternary ordered-pair relation orelity means that the third argument position is an oparition-set that gives a relation between the first two sets.
$\left[\mathrm{OR}\left(\sigma_{1} ; \sigma_{2} ; \sigma_{3}\right)\right] \leftrightarrow\left[\sigma_{3} \in\left(\Uparrow\left(\sigma_{1} \times \sigma_{2}\right)\right)\right] \leftrightarrow\left[\forall \sigma_{4}\left[\left[\sigma_{4} \in \sigma_{3}\right] \rightarrow\left[\exists \sigma_{5}\left[\exists \sigma_{6}\left[\left[\left[\sigma_{5} \in \sigma_{1}\right] \wedge\left[\sigma_{6} \in \sigma_{2}\right]\right] \wedge\left[\sigma_{4}=\left(\sigma_{5}-\sigma 6\right)\right]\right]\right]\right]\right]\right]$
The ternary relation jectivity given by extra-relation-constant $\mathrm{JR}(\sigma ; \sigma ; \sigma)$ means that the third argument position is a unex-oparition-set that represents a jection of one set to another set (existence and uniqueness required); it refers to a unary function, higher arities would read like e.g. a binary function JR($\sigma ; \sigma ; \sigma ; \sigma)$.
$\left[\operatorname{JR}\left(\sigma 1 ; \sigma 2 ; \sigma_{3}\right)\right] \leftrightarrow\left[\left[\mathrm{OR}\left(\sigma 1 ; \sigma_{2} ; \sigma_{3}\right)\right] \wedge\right.$
$\left.\left.\left.\left[\forall \sigma 5\left[\left[\sigma 5 \in \sigma_{1}\right] \rightarrow\left[\exists \sigma 6\left[\left[\left[\sigma 6 \in \sigma_{2}\right] \wedge\left[(\sigma 5-\sigma 6) \in \sigma_{3}\right)\right]\right] \wedge\left[\forall \sigma 7\left[\left[\left[\sigma 7 \in \sigma_{2}\right] \wedge\left[(\sigma 5-\sigma 7) \in \sigma_{3}\right)\right]\right] \rightarrow[\sigma 7=\sigma 6]\right]\right]\right]\right]\right]\right]\right]$
The ternary relation injectivity given by extra-relation-constant IJR $(\sigma ; \sigma ; \sigma)$ means that the third argument position is a unex-oparition-set that represents an injection of one set to another set.

```
[IJR(\sigma1;\sigma2;\sigma3)]\leftrightarrow[[JR(\sigma1;\sigma2;\sigma3)]^[\forall\sigma4[\forall\sigma5[\forall\sigma6[\forall\sigma7[[[[[[[]
[\sigma4\in\mp@subsup{\sigma}{1}{\prime}]^[\sigma5\in\mp@subsup{\sigma}{1}{}]]^[\sigma4\not=\sigma5]]^[\sigma6\in\sigma2]]^[\sigma7\in\mp@subsup{\sigma}{2}{\prime}]]^[(\sigma4-\sigma6)\in\sigma3)]]^[(\sigma5-\sigma7)\in\mp@subsup{\sigma}{3}{})]]->[\sigma6\not=\sigma7]]]]]]]
```

The ternary relation surjectivity given by extra-relation-constant $\operatorname{SJR}(\sigma ; \sigma ; \sigma)$ means that the third argument position is a unex-oparition-set that represents a surjection of one set to another set
$\left.\left.\left[\operatorname{SJR}\left(\sigma_{1} ; \sigma_{2} ; \sigma_{3}\right)\right] \leftrightarrow\left[\left[\operatorname{JR}\left(\sigma 1 ; \sigma_{2} ; \sigma_{3}\right)\right] \wedge\left[\forall \sigma_{4}\left[\left[\sigma_{4} \in \sigma_{2}\right] \rightarrow\left[\exists \sigma_{5}\left[\left[\sigma 5 \in \sigma_{1}\right]\right] \wedge\left[\left(\sigma_{5}-\sigma 4\right) \in \sigma_{3}\right)\right]\right]\right]\right]\right]\right]$
The ternary relation bijectivity given by extra-relation-constant $\operatorname{BJR}(\sigma ; \sigma ; \sigma)$ means that the third argument position is a unex-oparition-set that epresents a bijection of one set to another set, but one should notice that σ_{3} only applies to the direction σ_{1} to σ_{2}; the other direction needs a different σ_{3}.
$\left[\operatorname{BJR}\left(\sigma 1 ; \sigma 2 ; \sigma_{3}\right)\right] \leftrightarrow\left[\left[\operatorname{IJR}\left(\sigma 1 ; \sigma 2 ; \sigma_{3}\right)\right] \wedge\left[\operatorname{SJR}\left(\sigma 1 ; \sigma_{2} ; \sigma_{3}\right)\right]\right]$
Using these extra-relation-constant strings one can define the order relations and equivalence relations that allow for introducing cardinality as mentioned before.

Table 5 contains the definitions of three binary relations: card-minor-equality $\sigma \sim \sigma$, card-equality $\sigma \sim \sigma$ and card-minority $\sigma \sigma . \sigma\{\sim \sigma$ is a total order relation as it is reflexive, antisymmetric, transitive and connective. $\sigma \sim \sigma$ is an equivalence relation relation as it is reflexive, symmetric and transitive.

One can express card-equality using surjectivity only as there is the following THEOREM
$\forall \sigma_{1}\left[\forall \sigma_{2}\left[\left[\sigma_{1} \sim \sigma_{2}\right] \leftrightarrow\left[\left[\exists \sigma_{3}\left[\mathrm{SJR}\left(\sigma_{1} ; \sigma_{2} ; \sigma_{3}\right)\right]\right] \wedge\left[\exists \sigma_{3}\left[\mathrm{SJR}\left(\sigma 2 ; \sigma_{1} ; \sigma_{3}\right)\right]\right]\right]\right]\right]$

Applying it to a set and its potention set one gets the general-diagonal-sentence
$\forall \sigma_{1}\left[\neg\left[\exists \sigma_{2}\left[\operatorname{BJR}\left(\left(\Uparrow \sigma_{1}\right) ; \sigma_{1} ; \sigma_{2}\right)\right]\right]\right]$
$\forall \sigma_{1}\left[\neg\left[\sigma_{1} \sim\left(\Uparrow \sigma_{1}\right)\right]\right]$
and with choice of $\sigma \mathrm{cnl}$ for σ_{1} the special cantor-diagonal-sentence
$\neg\left[\exists \sigma_{1}\left[\mathrm{BJR}\left((\Uparrow \sigma \mathrm{cnl}) ; \sigma \mathrm{cnl} ; \sigma_{1}\right)\right]\right]$
$\neg[\sigma \mathrm{cnl} \sim(\Uparrow \sigma \mathrm{cnl})]$
With the representations of relations one can do Cantor diagonalization and state the general-diagonalsentence as a THEOREM in calcule sigma with first-order logic FOL:

$$
\forall \sigma_{1}\left[\neg\left[\exists \sigma_{2}\left[\left[\sigma_{2} \in\left(\Uparrow\left(\sigma_{1} \times\right)\right)\right] \wedge\left[\forall \sigma_{3}\left[\left[\sigma_{3} \in\left(\Uparrow \sigma_{1}\right)\right] \rightarrow\left[\exists \sigma_{4}\left[\left[\sigma_{4} \in \sigma_{1}\right] \wedge\left[\forall \sigma_{5}\left[\left[\sigma_{5} \in \sigma_{3}\right] \leftrightarrow\left[\left(\sigma_{4}-\sigma_{5}\right) \in \sigma_{2}\right]\right]\right]\right]\right]\right]\right]\right]\right]\right.
$$

It reads in its most condensed form

```
\forall\mp@subsup{\sigma}{1}{}[\mp@subsup{\sigma}{1}{}{(\Uparrow\mp@subsup{\sigma}{1}{})]
```

It is remarkable, but usually not mentioned, that Cantor diagonalization is a general feature of all secondorder logic calcules, may they be concrete or abstract. No use is made of 'numbers'. The second-order pseudo-calcule is called Phitonpython with sort $\phi \bar{\omega}$.

The indirect proof of Cantor for the THEOREM
$\left.\neg\left[\exists 1(\phi \varpi ; \phi \varpi)\left[\forall 1(\phi \varpi)\left[\exists \phi \varpi 1\left[\forall \phi \omega_{2} 2\left[1\left(\phi \omega_{2}\right)\right] \leftrightarrow\left[1\left(\phi \omega_{1} ; \phi \omega_{2}\right)\right]\right]\right]\right]\right]\right]$
has the choice of a counter-example $\phi \varpi 2=\phi \varpi 1$ and $\left[1\left(\phi \omega_{1}\right)\right] \leftrightarrow\left[\neg\left[1\left(\phi \omega_{1} ; \phi \omega_{1}\right)\right]\right]$
Following the indirect proof of Cantor for the sentence one gets the proof of the above THEOREM of axiomatic set theory by contradiction with a counter-example obtained by diagonalization:
replace $\sigma 5 \in \sigma 3$ by equivalent $(\sigma 5-\sigma 5) \in(\times \sigma 3)$
take $\sigma 5=\sigma 4$ and subset $(\times \sigma 3)=(((\sigma 1 \times) / \sigma 2) \cap(\times \sigma 1))$
and realize that $(\sigma 4-\sigma 4) \in\left(\left((\sigma 1 \times) / \sigma_{2}\right) \cap(\times \sigma 1)\right)$ contradicts $\left(\sigma_{4}-\sigma_{4}\right) \in \sigma_{2}$
The simplest case of the THEOREM is the original cantor-diagonal-sentence where $\sigma 1$ is taken as $\sigma \mathrm{cnl}$
$\neg\left[\exists \sigma_{1}\left[\left[\sigma_{1} \in(\Uparrow(\sigma \mathrm{cn} \mid \times))\right] \wedge\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in\left(\Uparrow \sigma_{\mathrm{cnl}}\right)\right] \rightarrow\left[\exists \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{\mathrm{cn}} 1\right] \wedge\left[\forall \sigma_{4}\left[\left[\sigma_{4} \in \sigma_{2}\right] \leftrightarrow\left[\left(\sigma_{3}-\sigma_{4}\right) \in \sigma_{1}\right]\right]\right]\right]\right]\right]\right]\right]\right.$
In conventional language it says: the set of natural numbers has less cardinality than its power-set (given by potention). Or there is no surjection of natural numbers to their properties. It reads in its most condensed form as follows:

```
\sigmacnl{ (介\sigmacnl)
```


7 Proof-complete and basis-complete

The expressions complete and its negation incomplete appear in two different meanings with respect to a logical system. It would be better if a system were called
proof-incomplete
basis-incomplete
if there are true sentence strings that cannot be proven within the system
if there are sentence strings that that do not contradict the system, nor do their negations contradict the system.

Gödel's famous completeness and incompleteness theorems mean proof-completeness and proofincompleteness. The author thinks that the expression 'complete' is not a very good choice. There is nothing missing in a proof-incomplete system that one could add to make it complete. It would be better to talk about autarkic and non-autarkic systems. In an autarkic system the truth of sentence strings is derivable within the system, whereas in a non-autarkic system the truth s comes from the outside.

The expression 'complete' is a much better choice in the second case, as the systems actually lack something. At least in certain cases incomplete systems can be made complete by new Axiom strings.

The simplest example for an basis-incomplete system is the abstract calcule gamma of group theory where neither the simple commutability sentence $\forall \gamma_{1}\left[\forall \gamma_{2}\left[\left(\gamma_{1} \otimes \gamma_{2}\right)=\left(\gamma_{2} \otimes \gamma_{1}\right)\right]\right]$ nor its negation contradict the Axiom strings. Traditionally the most important example is the basis-incomplete absolute planar geometry, where Euclid's Axiom of unique parallels or its negation, Lobachevsky's Axiom of multiple parallels can be added. Both Euclidean and Lobachevskyan geometries are basis-complete.

The following figure shows the various classifications of sentence strings with respect to TRUTH in the systems of the FUME-method that are called concrete calcules or abstract calcules.

Figure 2 Classification of sentence strings with respect to TRUTH
The TRUTH of a clarity needs at most limitive logic (predicate logic with limited quantions).
The TRUTH of a CISCLARITY sentence needs a special proof and quantive logic (predicate logic).
The TRUTH of a TRANSCLARITY sentence cannot be found within the calcule.
For a proof-incomplete calcule the yellow area of TRANSCLARITY is not empty: there are true sentences like the famous Gödel-sentence (of Gödel's so-called 'incompletnesss theorem') that cannot be proven from axioms.

In a basis-complete calcule it holds that every sentence is either a TRUTH or a FALSEHOOD : e.g. in Euclidean geometry every sentence is either true or false, tertium non datur. In a basis-incomplete calcule the purple area of limbHOOD is not empty: there are sentences that are neither true nor false, they are can be called limbic (the negation of clear), as they are so to speak 'in limbo'; . The simple example of absolute geometry theory can be made basis-complete by adding an axiom of parallelity. This is not the case for the famous example of axiomatic set theory with the sentence of Cantor's continuum hypothesis that shows that it is not basis-complete.

An important problem at the very center of set theory is called the Continuum Hypothesis CH．Its simplest form is given by the cantor－continuum－sentence which states that there are no sets with cardinality between $\sigma \mathrm{cnl}$ and its potention（介㪀l）where $\sigma \mathrm{cn}$ is the infinite set created from the nilset on by successive singlition $(\mid \sigma)$ ．With the concept of cardinal numbers one says that there is no cardinal number between aleph－zero and aleph－one．Observe the use of boldface italics fonts in $\sigma c c h s=$ for distinguishing metalanguage Mencish from object－language Funcish：

$$
\sigma c c h s=\forall \sigma_{1}\left[\left[\left[\sigma c n k \sim \sigma_{1}\right] \wedge\left[\sigma_{1}\{\sim(\Uparrow \sigma c n l)]\right] \rightarrow[[\sigma 1 \sim \sigma c n l \mid][\sigma 1 \sim(\Uparrow \sigma c n l)]]\right]\right.
$$

Alternative formulation

$$
\sigma c c h s a=\neg\left[\exists \sigma_{2}\left[\left[\sigma \mathrm{cnh}\left\{\sigma_{2}\right] \wedge[\sigma z\}(\Uparrow \sigma \mathrm{cn})\right]\right]\right]
$$

The general－continuum－sentence claims that all sets between a set and its potention have either the cardinality of the set or the cardinality of its potention．

$$
\sigma g c h s=\forall \sigma_{3}\left[\forall \sigma_{4}\left[\left[\left[\sigma_{4} \mathcal{\sim} \sim \sigma_{3}\right] \wedge\left[\sigma_{3} \mathcal{A} \sim\left(\Uparrow \sigma_{4}\right)\right]\right] \rightarrow\left[\left[\sigma_{3} \sim \sigma_{4}\right] \vee\left[\sigma_{3} \sim\left(\Uparrow \sigma_{4}\right)\right]\right]\right]\right.
$$

Kurt Gödel had shown in 1938 ：if ZF is consistent so is $\mathrm{ZFC}+\mathrm{CH}$（Continuum Hypothesis）， Gödel，K．（1940）．The Consistency of the Continuum－Hypothesis．Princeton University Press

Paul Cohen had shown in 1963 ：if ZF is consistent so is ZFC＋negation of CH Cohen，Paul J．（December 15，1963）．＂The Independence of the Continuum Hypothesis＂．Proceedings of the National Academy of Sciences of the United States of America．50（6）：1143－1148

The Gödel－Cohen metasentence says that Cantor＇s continuum hypothesis can neither be proven nor can its negation be proven in the framework of axiomatic set theory．The cantor－continuum－sentence was the first example of a sentence that was shown to be independent of ZFC．This means that axiomatic set theory is basis－incomplete as can be expressed in metalanguage：

ヨor［［sentence（ σ ）］＾［ᄀ［［TRUTH（ $\sigma 1)] \vee[\operatorname{TRUTH}(\neg[\sigma 1])]]]]$
The cantor－continuum－sentence is neither true nor false：it is a limbic sentence
$\neg[[\operatorname{TRUTH}(\sigma c c h s)] \vee[\operatorname{TRUTH}(\neg[\sigma c c h s])]]$

9 A weird formula and the Separation-axiom

In sections 1 and 2 formula strings were introduced in an abbreviated fashion. This should be sufficient for this publication, as formula strings correspond exactly to the conventional use of the expression 'formula' in logical systems. It is also clear what is meant by a unary-formula string as formula that contains exactly one free variable and a norm-formula string that has successive free variable strings $\sigma 1$, $\sigma_{2}, \sigma_{3} \ldots$ and a unary-norm-formula string with exactly one free variable σ_{1}.

Returning to the opening line in section 5 'the definition of a relation-constant by a formula is straightforward' one can have second thoughts if that is so in general. The reason for this investigation are the results of the two preceding sections on basis-incompleteness and Cantor's continuum hypothesis. One starts with the following unary-norm-formula that make use of the alternative expression of the cantor-continuum-sentence :

```
oweird-formula \(=[\sigma 1 \neq \sigma n] \vee[[\sigma 1=\sigma n] \wedge[\sigma c c h s a]]\)
oweird-formula \(=\left[\sigma_{1} \neq \sigma \mathrm{n}\right] \vee\left[[\sigma 1=\sigma \mathrm{n}] \wedge\left[\neg\left[\exists \sigma_{2}\left[\left[\sigma \mathrm{cnl}\left\{\sigma_{2}\right] \wedge\left[\sigma_{2}\{(\Uparrow \sigma \mathrm{cnl})]\right]\right]\right]\right]\right.\right.\)
```

It is not a formula that gives a value 'true' or 'false' for every argument, as it is limbic at $\sigma_{1}=\sigma n$. There is no way to know beforehand in axiomatic set theory if a formula is clear everywhere. One has to notice the important (usually ignored) general fact that in an incomplete theory there are limbic formula strings besides limbic sentence strings as well. In the preceding section 8 the cantor-continuum-sentence has been introduced which is limbic, and it was mentioned that there are other limbic sentence strings in axiomatic set theory as well.

There are many formula strings like oweird-formula. One cannot determine beforehand if a formula is clear or limbic, it has to be checked for every instance, and it poses the same problem in principle as determining if a sentence string is clear or limbic.

What does that mean in connection with the Separation-axiom strings? They are based on formula strings without any further restrictions. The simplest Separation-axiom strings are obtained from the following mater with unary-norm-formula strings σ_{1} with free variable σ_{1}, it says that there exists a set $\sigma 0$ whose elements are those of a set σ_{2} that also fulfill the formula strings σ_{1} :
$\forall \sigma_{2}\left[\exists \sigma_{0}\left[\forall \sigma_{1}\left[\left[\sigma_{1} \in \sigma_{0}\right] \leftrightarrow\left[\left[\sigma_{1} \in \sigma_{2}\right] \wedge\left[\sigma_{1}\right]\right]\right]\right]\right]$
Choose $\sigma_{2}=\sigma \mathrm{cnl}$ and $\sigma_{1}=\sigma$ weird-formula
$\exists \sigma_{0}\left[\forall \sigma_{1}\left[\left[\sigma_{1} \in \sigma_{0}\right] \leftrightarrow\left[\left[\sigma_{1} \in \sigma c \mathrm{cl}\right]\right] \wedge[\right.\right.$ weird-formula $\left.\left.\left.]\right]\right]\right]$
$\exists \sigma_{0}\left[\forall \sigma_{1}\left[\left[\sigma_{1} \in \sigma_{0}\right] \leftrightarrow\left[\left[\sigma_{1} \in \sigma c_{n l}\right] \wedge\left[[\sigma 1 \neq \sigma n] \vee\left[\left[\sigma_{1}=\sigma n\right] \wedge\left[\neg\left[\exists \sigma_{2}\left[\left[\sigma \mathrm{cnh}\left\{\sigma_{2}\right] \wedge\left[\sigma_{2}\{(\Uparrow \sigma \mathrm{cnl})]\right]\right]\right]\right]\right]\right]\right]\right]\right.\right.$
Choose $\sigma 1=\sigma$ as the empty set, observe $\sigma n \in \sigma c n l$,
$\exists \sigma 0\left[[\sigma n \in \sigma 0] \leftrightarrow\left[[\sigma n \in \sigma c n l] \wedge\left[[\sigma n \neq \sigma n] \vee\left[[\sigma n=\sigma n] \wedge\left[\neg\left[\exists \sigma 2\left[\left[\sigma c n k \sigma_{2}\right] \wedge[\sigma 2\{(\Uparrow \sigma c n l)]]\right]\right]\right]\right]\right]\right]\right.$

```
\exists\sigma0[[\sigman\in\sigma0]\leftrightarrow[\neg[\exists\mp@subsup{\sigma}{2}{}[[\sigmac\textrm{ch}{}\mp@subsup{\sigma}{2}{}]^[\sigma2{(\Uparrow\sigma\textrm{cll})]]]]]
\exists\sigma0[[\sigman\in\sigma0]\leftrightarrow[\sigmacchsa ]]
```

This, however, is not a proper TRUTH as it is required for a set that must be definite if another set is contained in it or not: The binary relation-constant $\sigma \in \sigma$ is defined everywhere, one must not exclude certain elements.

An even simpler weird formula could be taken as $\left[\sigma_{1}=\sigma_{1}\right] \wedge[\sigma c c h s a]$ and one could construct many more limbic formula strings.

Other formula strings may be limbic (i.e. indefinite with respect to truth) but the formula expressed by $\sigma 1 \in \sigma 2$ with the basis-relation of membrity $\sigma \in \sigma$ must be clear (i.e. definite with respect to truth for all instances).

In other words: one can obtain sentence strings as Separation-axiom strings that are not meaningful TRUTH strings. One has to refute Separation-axiom strings in the usual fashion. And it seem doubtful if one can replace them by something else, as there is no way to determine beforehand if a formula is clear, i.e. if it is true or false for all instances.

Is there more than a flaw in axiomatic set theory?
The situation is different for the appearance of formulo strings in the Recursion-axiom and Replacitionaxiom strings as they are qualified as UNEX-formulo strings, a feature that can be expressed within metalanguage.

In some axiomatic set theories there are no separation axioms, as the corresponding sentences can be derived as theorems, but this does not change the problem, it just moves it to another level.

The author is deeply worried as the Separation-axiom strings are used right from the very beginning: e.g. intersectition $(\cap \sigma)$, intersection $(\sigma \cap \sigma)$, complemention (σ / σ) , production ($\sigma \times \sigma$) and bipotentiation ($\sigma \times$) necessitate Separation-axiom strings. And so one has to end with the question:

How can one solve the Separation-axiom problem of axiomatic set theory?

It would be no problem to replace the Separation-axiom mater by a finite number of Axiom strings that alloe for the introduction of intersection, complemention, production etc. . However, the author is afraid that this will not be enough, but that is not his problem.

10 Classes?

The problem of limbic formula strings (i.e. indefinite with respect to truth) is also very important in connection with the comprehension principle that is necessary for the definition of so-called classes. Classes are introduced as mathematical objects that can be unambiguously defined by a property that all its members share. For classes in axiomatic set theory this means that their member sets fulfill a formula. A formula string is the only way to represent a property in the first-order logic system of ZFC.

Now it is important to notice three facts with respect to formula strings:

- they are enumerable as they are strings with charcaters of afinite alphabet, which implies that classes are enumerable. The cardinality of classes is so-to-say aleph-zero.
- \quad they are not necessarily clear (i.e. definite with respect to truth) which implies that one does not know in general if a formula string leads to a class
- even clear formula strings pose a problem with respect to equivalence; it is not decidable in general if two clear formula strings are true for the same instances and therefore lead to the same class.

By the way: in the appendix a proposal is put forward how to incorporate classes into set theory in a rigorous fashion.

In literature one finds flowery statements like 'classes are described as equivalence classes of logical formulas'. Or 'classes are collections of sets that can be unambiguously defined by a property that all its members share' whatever a collection is - there is no such expression in first-order logic.

11 Properties and relation-constant strings in incomplete calcules

Functions can be represented by UNEX-formulo strings in all calcules, where this metaproperty has to be proven in every single case (indicated by the capital letters). In concrete calcules and basis-complete abstract calcule formula strings represent relations. However, in abstract calcules that are basisincomplete things may be different.

The problem of limbic formula strings like oweird-formula of section 9 leads to a second look at the introduction of extra-relation-constant strings in section 5 . It was done in two steps, firstly one set up the relation-constant strings as names, secondly one put life into them by writing down the formula string they are supposed to replace. Remember, extra-relation-constant strings were introduced as abbreviations of formula strings, both having the same arity where a little care had to be taken with respect to variable strings. Nobody had any scruples when introducing the two examples, binary equisubity $\sigma \subseteq \sigma$ and ternary jectivity $\operatorname{JR}(\sigma ; \sigma ; \sigma)$. But should one have had scruples?

The abstract calcule of axiomatic set-theory sigma is basis-incomplete, as was discussed in section 7. This lead to the statement that sigma allows for limbic sentence strings, which was not astonishing. However, in section 8 it was shown that there are limbic formula strings mas well. Actually one does not know beforehand, if a formula string is limbic or clear. The real problem lies in the fact that one cannot even express this using proper object and metalanguages, Funcish and Mencish, but only in supralanguage. There is no metaproperty COMPLETE-formula that could be used to properly introduce extra-relation-constant strings. One has to show it for every formula string by a special consideration. But this means that one cannot use in general an extra-relation-constant string to introduce a relation in incomplete calcules.

By the way: as a first-order logic calcule axiomatic set-theory sigma does not allow to talk about properties of sets.Not even about properties of natural numbers that are represented by natral set $\sigma v n l$ of table 4 . Properties of natural numbers are not enumerable (uncountable), whereas natural numbers are enumerable (countable). The best one can do is to introduce extra-property-constant strings. However, as strings of a finite alphabet they are enumerable (countable) and therefore cannot represent all properties, a feature that is usually ignored in the investigations of axiomatic set theory. This is another problem besides the fact that extra-property-constant are not necessarrily clear (truth-definite).

It looks like one has to abandon table 5 of section 5 . Even for the simple binary relation of equi-subity $\sigma \subseteq \sigma$ one cannot be sure if it can be introduced appropriately. Or can you derive from the Axiom strings that the defining formula $\forall \sigma_{3}\left[\left[\sigma_{3} \in \sigma_{2}\right] \rightarrow\left[\sigma_{3} \in \sigma_{1}\right]\right]$ is either true or false for all instances of σ_{1} and σ_{2} ? And how would you you express this in object or metalanguage? One has reached quite a dramatic point in the investigation of the abstract calcule of axiomatic set-theory sigma .

Our friend Vincent van Gogh went so far as to talk about hoaxiomatic set theory Axiomatic set theory is considered as the means to talk about so-called actual infinities in a precise way, using first-order logic. Axiomatic set theory is thought to be the mathematical theory on infinity.

But perhaps one cannot outsmart infinity.

In order to introduce classes in a rigorous fashion the following is proposed. Replace calcule sigma by an enriched bi-calcule sigma_sisi with two sort strings, besides σ for sets one has another one, 'sisi' $\sigma \sigma$ for classes, furthermore the ontological basis contains two more binary relations $\sigma \in \sigma \sigma$ and $\sigma \sigma \in \sigma \sigma$ as well as a property (unary relation) setity $\therefore \sigma \sigma$, meaning that a class corresponds uniquely to a set. In addition to Axiom strings $\boldsymbol{A 1}$ to $\mathbf{A 1 0 m}$ and $\boldsymbol{A 1 1}$ there are more Axiom strings for the new relations.

I do not know if this corresponds in some way to Arnold Oberschlep's kind of class-theoretical LClogic. Jürgen-Michael Glubrecht, Arnold Oberschelp, Günter Todt: Klassenlogik. Bibliographisches Institut, Mannheim u. a. 1983. Probably my fault, but I do not understand this book.

Abstraction principle is usually formulated only for the unary case, $y \in\{x: A(x)\}$ iff $A(y)$; it is expressed properly with a unary-formula $\sigma 1$. However later it is made use of the multary case without mentioning it. Therefore there are two Axiom matres for the unary and the multary case.

```
A12u \forall\sigma1[[sentence( }\forall\mp@subsup{\sigma}{1}{}[\mp@subsup{\sigma}{1}{}])]->[ Axiom(\exists\sigma\mp@subsup{\sigma}{1}{}[\forall\mp@subsup{\sigma}{1}{}[[\mp@subsup{\sigma}{1}{}\in\mp@subsup{\sigma}{1}{}]\leftrightarrow[\mp@subsup{\sigma}{1}{}]]])]
```

A12m $\forall \sigma_{1}\left[\forall \sigma_{2}\left[\forall \sigma_{3}\left[\left[\left[\right.\right.\right.\right.\right.$ omny $\left.\left(\sigma_{2}\right)\right] \wedge\left[\right.$ sentence $\left.\left.\left(\sigma_{2} \forall \sigma_{1}\left[\sigma_{1}\right] \sigma_{3}\right)\right]\right] \rightarrow$
[Axiom $\left.\left.\left.\left.\left(\sigma_{2} \exists \sigma_{\sigma_{1}}\left[\forall \sigma_{1}\left[\left[\sigma_{1} \in \sigma_{1}\right] \leftrightarrow\left[\sigma_{1}\right]\right]\right] \sigma_{3}\right)\right]\right]\right]\right]$
Only then one can use binary-formula $\sigma_{1}=\sigma 1 \in \sigma_{2}$ in order to show the trivial THEOREM that every set is a class.. One also defines the individual-constant collection class of all sets $\sigma \sigma c s$ by putting unaryformula $\sigma 1=\sigma_{1}=\sigma_{1}$ into abstraction principle: There is Euriscom (implicit definition)
D121 $\forall \sigma_{1}\left[\left[\sigma_{1} \in \sigma \sigma c s\right] \leftrightarrow\left[\sigma_{1}=\sigma_{1}\right]\right]$
But there is no possibility to express (the other way round) as an Axiom mater that for every class $\sigma \sigma 1$ there exists a unary-formula σ with free variable σ_{1} such that $\forall \sigma_{1}\left[\left[\sigma 1 \in \sigma \sigma_{1}\right] \leftrightarrow[\sigma \sigma]\right]$

Extensionality principle two classes are equal if their set elements are the same $A=B$ iff ($x \in A$ iff $x \in B)$; it is expressed properly. It gives Axiom

A13 $\forall \sigma \sigma_{1}\left[\forall \sigma \sigma_{2}\left[\left[\sigma \sigma_{1}=\sigma \sigma_{2}\right] \leftrightarrow\left[\forall \sigma_{1}\left[\left[\sigma_{1} \in \sigma \sigma_{1}\right] \leftrightarrow\left[\sigma 1 \in \sigma \sigma_{2}\right]\right]\right]\right]\right]$

Comprehension principle $\{x: A(x)\} \in B$ iff there exists y such that $y=\{x: A(x)\}$ and $y \in B$
It firstly necessitates the definition of $\sigma \sigma \in \sigma \sigma$ which only holds if the left argument of $\sigma \sigma 1 \in \sigma \sigma 2$ is a set, i.e. $\therefore \sigma \sigma 1$! There are the two Euriscom strings

DR72 $\forall \sigma \sigma_{1}\left[\left[\therefore \sigma \sigma_{1}\right] \leftrightarrow\left[\exists \sigma_{1}\left[\forall \sigma_{2}\left[\left[\sigma_{2} \in \sigma \sigma_{1}\right] \leftrightarrow\left[\sigma_{2} \in \sigma_{1}\right]\right]\right]\right]\right]$
Then there is the trivial mater that expresses that a class can be the member of another class only if there is a set with the same extension (big deal !). It gives THEOREM (not an Axiom) mater of comprehension:

```
\forall\sigma1[[sentence(\forall\sigma1[\sigmar])] }
```


One can define as extra-relation-constant strings $\sigma \sigma \subseteq \sigma \sigma$, $\sigma \sigma \subset \sigma \sigma$ and extra-function-constant strings $(\sigma \sigma \cap \sigma \sigma),(\sigma \sigma \cap \sigma \sigma),(\sigma \sigma \times \sigma \sigma)$ e.g. the most complicated case of class production:

```
\(\forall \sigma_{1}\left[\forall \sigma_{2}\left[\left[\right.\right.\right.\) sentence \(\left.\left(\forall \sigma_{1}\left[\sigma_{1}\right]\right)\right] \wedge\left[\right.\) sentence \(\left.\left(\forall \sigma_{1}\left[\sigma_{2}\right]\right)\right] \rightarrow\)
[ Euriscom( [[ \(\left.\left.\forall \sigma_{0}\left[\forall \sigma_{1}\left[\left[\sigma_{1} \in \sigma_{1}\right] \leftrightarrow\left[\sigma_{1}\right]\right]\right]\right] \wedge\left[\forall \sigma_{2}\left[\forall \sigma_{1}\left[\left[\sigma_{1} \in \sigma_{1}\right] \leftrightarrow\left[\sigma_{2}\right]\right]\right]\right]\right] \rightarrow\)
\(\left.\left.\left.\left.\left[\forall \sigma_{1}\left[\left[\sigma_{1} \in\left(\sigma \sigma_{1} \times \sigma_{2}\right)\right] \leftrightarrow\left[\exists \sigma_{2}\left[\exists \sigma_{3}\left[\left[\left[\left(\sigma_{1} ; \sigma_{1} \mathcal{\sigma _ { 2 }}\right)\right] \wedge\left[\left(\sigma_{2} ; \sigma_{1} / \sigma_{3}\right)\right]\right] \wedge\left[\sigma_{1} \in\left(\sigma_{2}-\sigma_{3}\right)\right]\right]\right]\right]\right]\right]\right)\right]\right]\right]\)
```


[^0]: ${ }^{1)}$ a singleton is a set with one element ${ }^{2)}$ the result is usually called 'ordered pair set' ${ }^{3)}$ pair-union, usually there are two meanings for 'union'

