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Summary: 

 

Church's thesis claims that all effecticely calculable functions are recursive. A shortcoming of the 

various definitions of recursive functions lies in the fact that it is not a matter of a syntactical check to 

find out if an entity gives rise to a function. Eight new ideas for a precise setup of arithmetical logic 

and its metalanguage give the proper environment for the construction of a special computer, the 

FAGACUS computer. Computers do not come to a necessary halt; it is requested that calculators are 

constructed on the basis of computers in a way that they always come to a halt, then all calculations are 

effective. The FAGATOR is defined as a calculator with two-layer-computation. It allows for the 

calculation of all primitive recursive functions, but multi-level-fagation also allows for the calculation 

of other fagative functions that are not primitive recursive. The new paradigm of calculation does not 

have the above mentioned shortcoming. The defenders of Church's thesis are challenged to show that 

exotic fagative functions are recursive and to put forward a recursive function that is not fagative. A 

construction with three-tier-multi-level-fagation that includes a diagonalisation leads to the 

extravagant yet calculable Spark-function that is not fagative. As long as it is not shown that all 

exotic fagative functions and particularily the Spark-function are arithmetically representable 

Gödel's first incompleteness sentence is in limbo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Releasse note: Version 2.0 differs from version 1.2 essentially in renaming the expression ARBACUS 

by FAGACUS, ARBATOR by FAGATOR, arbor by fagon, arbation by fagation, arbative by fagative, 

arby by fagy, arba by faga. The reason is that the Latin expression arbor for tree is too general, as 

there are many kinds of trees. A certain tree the beach (lat. fagus) was picked as an opposite to pine 

(lat. pinus) . In a related calcule the codes are called pinon numbers, in this publication the codes are 

called fagon numbers. The Boojum-function and the Snark-function also got new names: the Charge-

function and the Spark-function. This was done to avoid to have arithmetic function names that are not 

unique. Otherwise there are only some minor corrections. 
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1. Introduction 

1.1 On the way to recursive functions 

It is not easy to read textbooks on mathematical logics - this is at least my impression. It is strange that 

a topic that should illuminate our thinking defies a simple access. When I started to work on it some 

years ago I decided for myself to do better and bring more order and add some beauty. It was both a 

matter of content and aesthetics. I did not start rightout with the idea that there might be some open 

questions in mathematical logics, although I always had a strange feeling towards some Gödel-type so-

called theorems [2] [7], but who has not such a feeling if self-reference is involved ? And there was 

always this strange animal called Church's thesis [4] [5]. One would not allow for a thesis in 

mathematics, why allow for one in metamathematics or supramathematics**) (supra: meta-meta). The 

use of axioms within a theory is something else, as it is not claimed that they are intrinsically true. 

Every theorem of an axiomatic theory really reads: if the axioms are true then this and that is true. If 

one finds a system where the axioms are actually true one knows that the theorems are true. If not, it is 

just a Glasperlenspiel. There are conjectures e.g. like the Goldbach-conjecture, but nobody would call 

a sentence that depends either on the truth or the falsity of the Goldbach-conjecture a theorem. Only in 

the if-then-form it could be a theorem. 

 

The time between 1926 and 1936 must have been very exciting until there finally was a sustainable 

concept of effectively calculable functions that included Ackermann-functions [1] : around 1934 the 

Princeton circle of Church, Kleene and Gödel (and Herbrand)  introduced minimisation as an 

effective procedure complementing primitive recursions, which on their part consist of straight-

recursion*) and composition, starting from identity, projections and succession functions. By the way 

it was technically very simple to introduce the concept of minimisation with respect to arithmetical 

respresentations that are in the center of Gödel's work. It was much simpler than straight-recursion, 

where one needed Gödel's ingenious beta-function-technique. After that everything looked fine, except 

for the ontology problem*) (as I call it) that gave some people some headache, but obviously not too 

much in the last seventy years; more of this in the next section. In the years after 1936 various 

competing methods  for effectively calculable functions have been put forward, the following list is not 

complete: Turing, Markov, lamda-calculus, Abacus, Register and so on. But all of them turned out to 

be equivalent definitions of recursive functions. And they all have a catch of the sort: you cannot tell in 

general whether a machine comes to a halt or if a function has at least one value zero or so.  

1.2 Church's thesis and two theses of Gödel 

As all the attempts to construct effectively calculable functions have turned out to lead to the same 

result this was considered as good evidence for Church's thesis:  all effectively calculable functions 

are recursive. To my knowledge there has been no successfull attack on Church's calculability thesis, 

including hypercomputer concepts [8b] . And this is very important as some famous supratheorems 

depend on the truth of Church's calculability thesis. I call a proven sentence of a mathematical system 

a theorem and a proven metasentence*) about a mathematical system a metatheorem and a proven 

suprasentence**) about metamathematical systems a supratheorem*). This brings up the immediate 

question: how can you call something a theorem or a metatheorem or a supratheorem if it depends on a 

thesis. Properly it has to be called a thesis too (that is why I have used in the summary and in section 

1.1 the word "so-called"). And it does not help if somewhere in a first chapter it is written "under the 

asumption of Church's calculability thesis" or if one keeps repeating the mantra "assuming Church's 

calculability thesis", if one calls the outcome a theorem or metatheorem or supratheorem. The laymen 

readers take it as what you have called it. E.g. Gödel's so-called first incompleteness theorem (it is not 

a theorem but a suprasentence in the first place) really is Gödel's first incompleteness thesis as it 

depends on Church's calculability thesis.  

 

 

*) a star is attached if a word is given a new or special meaning, e.g. thesis is  used for supralanguage sentences and  

conjecture for language and metalanguage sentences.    **) two stars are attached to all words that I have coined newly. 
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And by the way: Gödel-type suprasentences say something about mathematics and nothing but: there 

are no other infinite language systems outside mathematics that one can reasonably talk about. Insofar 

they do not lend themselves for general philosophy. But whether authors explain it properly or not they 

start ranting about the consequences for science, philosophy, life in general and alleged limitations of 

the human mind. This is not my field. 

 

Assume for the moment that Church's calculability thesis would turn out to be false, as it can happen 

with theses, otherwise they would not be theses. Some parts of the general public would perhaps 

maliciously point at mathematicians and claim that this is just another field where professors like to 

quarrel. It is just of intellectual comfort to respond that everything was only said under well-stated 

conditions. 

 

What is the reason that such a problem can arise in mathematics, shouldn't it be free from eventual 

flaws. The answer is: one has to be precise, the problem does not arise in mathematics but only when 

one talks about mathematics. When one talks in mathematics (or even metamathematics) one usually 

has a well-defined system like group theory or real functions and no deep ontological problems, e.g. 

there are individuals, sets, mappings and predicates, sentences and formulae et cetera; and the 

mathematicians prove the truth of certain sentences. A sentence that starts with "for all" usually has a 

pretty good meaning. Perhaps this picture of mathematics is a little too romantic, but with a grain of 

salt that is what mathematics is all about.  

 

When one talks about mathematics and metamathematics, that is when one talks in supramathematics, 

the situation is completely different. The fantasy and the creativity of mathematician seems to be 

without limits and they keep inventing all sorts of systems. A suprasentence that starts with "for all" is 

something completely different from normal mathematics, as it may comprise those systems that have 

not yet been invented, but that may be invented by future mathematicians, the domain is open. So it is 

quite natural that things like Church's calculability thesis exist and you should enjoy them, because 

they may provide an interesting area to work on. 

 

In the following I will present some results on my work on Church's calculability thesis. I have yet to 

explain what I mean by ontology problems in connection with it. In a system of recursive functions 

you know what you mean by numbers, formulae or sentences, but you have not such a clear notion 

what a recursive function is. You cannot state "for all recursive functions" without problems as - 

roughly speaking - recursive functions are defined as programs that halt. As there is no general 

criterion for the halting of programs you have no criterion if a given program is a recursive function. 

There are certain classes of recursive functions, e.g. the one that is called primitive, with which you 

can do beautiful mathematics, but there always remains the Damokles-sword of nonhalting . 

 

If one is not interested in Church's calculability thesis per se but rather on the important application in 

the proofs of so-called Gödel-type metatheorems one can overcome the ontological discussion as these 

only need Church's calculability thesis insofar as it is used in the metatheorem that all recursive 

functions are arithmetically representable [7] by logical formulae that use nothing but zero, 

succession, addition and multiplication (usually "arithmetically" is left away). In the following I will 

therefore use a weaker thesis that I (posthumously) call Gödel's calculability thesis: all effectively 

calculable functions are arithmetically representable. 

 

This is much more convenient: suppose somebody has shown that Church's calculability thesis is false 

as he has produced a non-recursive effectively calculable function. If this function happens to be 

arithmetically representable no problem with Gödel-type theses occur. So you better check for Gödel's 

calculability thesis first. If you find an effectively calculable function that is not arithmetically 

representable Gödel's first incompleteness thesis is false. If it is unknown whether it is arithmetically 

representable or not, Gödel's first incompleteness thesis is in limbo. 
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2. Language environment 

In this chapter I sketch the environment that is necessary for the introduction of what I call the 

concrete calcule NU of decimal fagation**) natural numbers. This concrete calcule will turn out to be 

a real gold-mine, which will be exploited subsequently. 

2.1 Abstract and concrete calcules 

My desire for a clearer view on mathematical logics could not be done without some new methods, 

both for content and notation. I did not hesitate to redefine some expressions and even to invent some 

new expressions. The textbook authors have invented new terminology too. I found their special 

characters pretty ugly and sometimes poorly documented; Cutland [6] may forgive me, that I quote 

notation of p. 241-245 as an example with strange scripts, arrows et cetera.  As I am not affiliated with 

any organisation I felt completely free to follow new paths. This is the advantage of the independent 

private scholar. As this publication serves the purpose to distribute some new results I cannot go into 

all the details and I will only sketch some concepts as it is usually done in scientific magazine 

contributions, where the learned reader will understand them nevertheless. Some examples will help. A 

textbook is in work and will be published in some time. I start off with the first of eight ideas: 

 

(idea 1) abstract and concrete calcules. 

 

The name calcule**) was chosen as I mean something that may be called calculus in Latin or Kalkül 

in German; in English, however, calculus is already used for the theory of functions of real numbers. 

A calcule is a language system, it consists of sentences that are formed according to some syntax rules.  

 

An abstract calcule*) is a formal system, it does not talk about anything. It starts with a list of 

sentences that are called axioms. The axioms and those sentences that can be obtained via logical 

deduction are called valid. The sentences of an abstract calcule can be valid, invalid or indefinite. The 

deeper logical meaning of an abstract calcule is that it allows to state the truth of some if-then-

sentences where the if-clause states the existence (in whatever sense) of certain entities that fulfill 

some rules. 

 

A concrete calcule*) talks about a codex*). A codex consists of individuals (finite strings*) of 

characters of a finite alphabet and a decidable equality relation) that are formed according to some 

syntax rules. Furthermore a codex can include the precise description of calculation procedures for 

some functions and relations through a calculator*). I call a machine a calculator if it halts for all 

programs with all possible inputs, whereas a computer*) is a machine that may or may not halt 

computing when given a certain program with a certain input. So far this is just wording, when it gets 

to the real description of calculators one must have a guarantee that no non-halting situations can 

occur. With this definition every calculation*) is effective and if something is calculable*) it is 

effectively calculable ("effectively calculable" then becomes a pleonasm). A computer computes, a 

calculator calculates a result ( in German: "ein Rechner rechnet, ein Kalkulator berechnet ein 

Ergebnis"). Due to the reference to a codex a concrete calcule is not a formal system.  

 

Sentences of a concrete calcule are true or false. The general method of finding the truth of basic 

sentences of concrete calcules is yet to be investigated. I give it the name demonstration as opposed 

to deduction. Once you have true sentences in a concrete calcule you can start using deduction for 

more true sentences. 

 

Therefore a proof is either a deduction or a demonstration. In this publication I restrict my view of 

mathematics to abstract and concrete calcules and do not go into the question whether there are other 

meaningful fields of mathematical work. 
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2.2 Hierarchy of languages 

In the context of this publication there are basically two very different types of languages 

 

- proposition languages, which consist of sentences that can be true in some sense or not 

- command languages of computer programs. 

 

I start with proposition languages and state 

 

(idea 2) Mencish-Funcish hierarchy of precise languages up to supra-tier. 

 

If a language talks about another language it is a metalanguage relative to this language. For abstract 

and concrete calcules I introduce the language Funcish**) (short for Functum-language). I do not use 

common language as its metalanguage, but rather another precisely defined language that I call 

Mencish**) (short for Meta-Funcish). Metacalcules are precisely defined but they are not formal 

systems. A calcule is given a name that refers to its individual sort: in  this publication the abstract 

calcule alpha and the concrete calule NU. They are formulated in Funcish and talked about in Mencish. 

Mencish is talked about in common language, which is English (or at least, what I, being of German 

tongue, consider to be English). Section 4.2 will define the command language A0**) for the codex. 

 

 English  
 

talks about 

 

Mencish  
 

 

Funcish  
 

abstract calcule alpha 
 

concrete calcule NU 
 

codex NU 

supra 

meta 

infra 

metacalcule alpha 
 

metacalcule NU 
 

with respect to 
object-calcule 

A0 

 

Figure 1. Hierarchy of languages and codices (tiers of languages) 

 

A hierarchy of languages means that languages appear in tiers*) : with respect to a given language the 

next higher tiers are called meta-tier, meta-meta-tier and so on, the next lower tier is called infra-tier. 

The highest tier is called supra-tier (it is usually the common language), the lowest is called hypo-tier. 

Two languages with a common metalanguage share the same tier. In this publication the supra-tier is 

the meta-meta-tier and the infra-tier is the same as the hypo-tier. In this publication I will do some 

things in English that should be properly done in Mencish. This is for shortness and easier readability 

and is to be taken care of in future publications.  

 

Mencish is in a sense simpler than the languages it talks about. It talks about finite strings of 

characters, which means that it is something like a concrete arithmetic calcule, which also talks about 

finite strings of characters, that are called numbers. Of course, it is not inherent in numbers that they 

have to be written decimal form. Unal, dual, octal in general multal**), you can write numbers to any 

base. You may build numbers from the characters of the calcule that a metacalcule is talking about. In 

this sense all the metaindividuals**), i.e. strings, are numbers. I will make ample use of this simple 

fact. Finally: the two calcules of this publication and their metacalcules are strictly first-order-logic . 
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2.3 Bavaria-notation 

This is the idea of bringing good order and maybe even some beauty: 

 

(idea 3) Bavaria-notation with typographic distinction between languages. 

 

For the relatively simple cases that are treated in this publication the notation for Mencish and Funcish 

looks very similar to the usual logical notation. Just for kicks I call it Bavaria-notation**). It is 

computer-proof, you must not change the style of a single character. The three languages English, 

Mencish and Funcish each have their own alphabet, so  that they can already be distinguished  by their 

typography.  

 

The individuals sorts of abstract calcules are denoted by small Greek letters point 12, individual sorts 

of concrete calcules are denoted by capital Greek letters point 12, e.g. for my two calcules I have  and 

. The metaindividual sorts (strings of the corresponding metacalcules) are in boldface italics  and . 

 

Bavaria-notation obeys rule the that you can tell from the name of an entity its exact ontological 

placement in the system, or in simple language: the names of entities speak. The name of the binary 

multiplication function in abstract calcule alpha is e.g. which shows that it is binary and that it 

maps the two numbers of the argument to a number. Notice that the name is not  , which in Funcish 

would be a number-constant like nullum n . 

 

No more further theory for the moment, let me specify the alphabets I need and give an example.  

 

font Times Roman in various points and styles: 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

0 1 2 3 4 5 6 7 8 9 , . ; . ! ? " ( ) [ ] é ä ö ü ß 

' + - * / =               # & § $ € @ 
 

Table 1. Alphabet for common language English (as you have already noticed in this publication) 

 

font Symbol boldface italics point1) 

                           12 

font Arial boldface italics  

0 1 2 3 4 5 6 7 8 9                  8 
a b c d e f g h i j k l m n o p q r s t u v w x y z - 10 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 10 

:: ¦ \                         12 
1) specifications in points apply only if the manuscript is printed in original DIN A4 size 

Table 2. Alphabet of Mencish metacalcules alpha and NU relating to calcules alpha and NU resp. 

 

font Symbol point 

                           12 

font Arial   

0 1 2 3 4 5 6 7 8 9                  8 
n                           10 

'                           12 
 

Table 3. Alphabet of abstract calcule alpha in Funcish 

 

Bavaria-notation solves the quotation problem in a perfect fashion: when you talk in one language 

about the words of another language you just fill them in without danger of mixing up tiers. 
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2.4 Exemplary abstract calcule alpha of arithmetic natural numbers 

As an example for the Bavaria-notation and the proper use of language and metalanguage I specify 

some strings of the first object-calcule**), the abstract calcule alpha of arithmetic natural numbers. In 

short notation I write the following definitions of the metaproperties of strings of alpha (notice the 

difference between boldface italics of metalanguage and straight letters of calcule language and the use 

of concatenation*) for strings) : 

 

nullum ::   n 

meaning    nullumn  11 n nullum1 
 

small-cipher ::  1  ¦  2  ¦  3  ¦  4  ¦  5  ¦  6  ¦  7  ¦  8  ¦  9  

succession ::  ' 

addition ::    

multiplication ::   

small-index::  small-cipher  ¦  small-index small-cipher  ¦  small-index 0 

number-variable  ::  small-index 

 

The nine axioms of the abstract calcule alpha of arithmetic natural numbers are certain strings, where 

you please notice the subtle difference between boldface italics and normal style of characters 

2n is a true and 2n is a false metasentence) : 

 

Aa1'1n

Ab12'1='21=2 

Ac11n1

Ad121'2'12

Ae11nn

Af121'2121

Ag1212n2n

Ah1231'32'41'421=2

Ai1231'322'311=2

 

This set of axioms is not categorical*) [7], which means that not all concrete calcules that fulfill these 

axioms are isomorphic: the correspondences between those concrete calcules are not bijective. This is 

shown according to Boolos et al. p. 216 [7] : one takes "normal" arithmetics with succession, addition 

and multiplication, say of decimal numbers as concretisation (I) and constructs the concretisation (II)  

from (I)  by adding to extra numbers with function tables that are extended for these values. Whereas 

concretisation (I)  has commutativity both of addition and multiplication, concretisation (II)  has not. 

 

Thus abstract calule alpha of arithmetic natural numbers contains indefinite*) sentences, like e.g. 

 

TRUTH121221

FALSEHOOD121221
 

Let me point out an important general feature: to every true sentence of a calcule there exist a true  

metasentence in its metacalcule, namely just the metasentence that states the truth. E.g. the above first 

axiom is a true sentence of abstract calcule alpha of arithmetic natural numbers: 1'1n 

 

The corresonding metasentence is: TRUTH1'1n 
 

So far abstract calcules, they will not be investigated any further in this publication.
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3. Concrete calcule NU of decimal fagation natural numbers 

3.1 Decimal numbers with a twist 

It is just for convention that I present the concrete calcule NU as a calcule for decimal numbers. 

Instead of ten I might as well use any other base greater than three. Quartal numbers (with 0 1 2 3 ) 
would do fine, whereas dual numbers (with 0 1 ) would pose some technical troubles; the troubles 

could be overcome but it is not worth it as the reader will see. 

 

font Arial point 

0 1 2 3 4 5 6 7 8 9 { } ,               12 

 

Table 4. Alphabet for codex NU 

 

font Symbol point 

1)                           12 

font Arial for concrete calcule NU  

0 1 2 3 4 5 6 7 8 9                  8 
a b c d e f g h i j k l m n o p q r s t u v w x y z - 10 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z - 10 

' ^                          12 
1) read this Greek letter "capital nu", don't ever say "en"; watch the difference from Times Roman character N: 
 

Table 5. Alphabet of concrete calcule NU 

 

Concrete calcule NU of decimal fagation natural numbers talks about the number strings of  codex NU 

that I write in a funny fashion using three synonymous characters. 

 

instead of  8   I write { and read "left brace" or "acco"  

instead of  9   I write }  and read "right brace" or "lade" 
instead of  89 or  { }   I write , and read "comma" 

 

The comma is not really part of the language. I use it like a makro of a programming language that is 

to be expanded whenever a string is processed. It is just for better understanding of number strings. A 

matching pair of characters { ... }  I call an "accolade". 
 

acco*) ::    { 
lade*)::    } 
decimal-cipher ::   1  ¦  2  ¦  3  ¦  4  ¦  5  ¦  6  ¦  7  ¦  {  ¦  } 
decimal-numeral ::  0  ¦  decimal-cipher 

positive-number ::  decimal-cipher  ¦  positive-number  decimal-numeral 
number ::    0  ¦  positive-number 

 

I count: zero, one, two, three, four, five, six, seven, eight resp. acco, nine resp. lade and write e.g. my 

year of birth nineteenhundred-and-fortyone 1}41 ; one can get used to that and the reader will see very 

soon why I do that. I will also use the following number strings: 
 

octal-cipher ::   1  ¦  2  ¦  3  ¦  4  ¦  5  ¦  6  ¦  7 

octal-numeral ::   0  ¦  octal-cipher 

positive-octal-number :: octal-cipher  ¦  positive-octal-number  octal-numeral 
octal-number ::   0  ¦  positive- octal-number 

field ::    octal-number  ¦  0 positive-octal-number 
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3.2 The decimal fagation calculator FAGATOR 

Before I start talking about calculators lets have some definitions: 

 

small-letter-symbol ::  a  ¦  b  ¦  c  ¦  ...  ¦  x  ¦  y  ¦  z  ¦  -  ¦  '  ¦    ¦    ¦  ^ 

small-word ::   small-letter-symbol  ¦  small-word small-letter-symbol 

number-constant ::  small-word 
 

number-constant strings are names of number strings, e.g. for nullum I have number-constantn 
 

zero ::    0 

nullum ::    n 

nullum-thing*) ::   zero  ¦  nullum 

 

number-variable  ::   small-index 
number-dingus*) ::  number  ¦  number-constant  ¦  number-variable 
number-thing ::   number-variable  ¦  number 

number-array ::   number  ¦  number-array    number 

number-argument ::      ¦   number-array  

number-variable-array :: number-variable  ¦  number-variable-array    number-variable 

number-variable-argument ::     ¦   number-variable-array  

number-dingus-array ::  number-dingus  ¦  number-dingus-array    number-dingus 

number-dingus-argument ::     ¦   number-dingus-array  
 

So far the codex NU that concrete calcule NU is talking about has only number strings. In order to do 

some mathematics I need some mappings or relations. As it was introduced in section 1.1. a codex can 

contain calculators, that take care of functions and relations. Codex NU  contains a series of functions 

that I call the decimal fagation calculator or decimal FAGATOR**) which is an acronym for 

FAGation calculATOR: 

 

FAGA 

FAGA 

FAGA
... 

and so on, where I call the first argument position the program-position*) and the consecutive the 

input-positions*). As I do not have any other functions I will use a synonymous notation with the 

prodecure number behind the argument without the danger of any confusion: 

 

1FAGA11 

12FAGA1221 

123FAGA123231 

... 

and so on. This is part of the conventions that I call Bavaria-notation (as opposed to the Polish notation 

where parentheses are lacking). This abbreviation is only used in concrete calcule NU . 

 

The decimal fagation calculators that I am going to define in the next two chapters produce exactly the 

usual primitive recursive functions. Decimal fagation calculators are just another method to calculate 

primitive recursive functions. However, it lends itself to some new ideas that will turn out to be very 

useful. Decimal fagation calculators make use of the decimal1) FAGACUS**) computer that I am 

going to describe in the following. FAGACUS is an acronym for FAGation abaCUS.  

 

 
1) Until section 7.5 I will only talk about decimal FAGACUS and FAGATOR and therefore will leave away decimal.  
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3.3 Definition of  fagon-number and primitive-fagon-number strings 

Firstly I define two important classes of numbers, which will be the basis of  fagation. 

 

In the following  f  is mnemonic for field and  a  for accolade*), denoting whether a number string 

starts or ends with a field or an accolade respectively. 
 

f-f-tree ::   field  ¦  field  a-f-tree  ¦  f-a-tree  field ¦  field a-a-tree  field 
accolade-tree ::  {}  ¦  { f-f-tree } 
a-a-tree ::   accolade-tree  ¦  a-a-tree  a-a-tree  ¦  a-a-tree  f-a-tree  ¦  a-f-tree  a-a-tree   
f-a-tree ::   f-f-tree  a-a-tree   
a-f-tree ::   a-a-tree  f-f-tree 
fagon-number ::  octal-number ¦  positive-octal-number  a-f-tree  ¦   

positive-octal-number  a-a-tree  ¦  a-f-tree  ¦  a-a-tree 

 

Now one can see why I have chosen the word fagon : it is Latin for tree. And this leeds to FAGACUS, 

FAGATOR, fagation etc. 

 

For short: an fagon-number*) string has a tree-structure through matching characters { and } , where no 

{{ or }} are admissible, furthermore it does not contain multiply prenulled octal numbers.  

  

E.g.{1 {0} 0,01} is an  fagon-number string, 10{{ and {001} are not  fagon-number strings. 

 

A  number string that is not an  fagon-number string is called a herbum-number string. 

 

A branch of a tree is called accolade; an accolade starts with an acco and finishes with a lade. The first 

field of an accolade is called its counter*), the last field its limit*). 

 

A primitive-fagon-number*) string is an  fagon-number string where counter and limit fields of all 

accolade do only appear inside the accolade as limit fields or in the fast-finish-form*) { counter , limit } 
. 
 

E.g. {1{1}2} is not a  primitive-fagon-number string as the counter 1 appears within the accolade, 

{0{0,01}01}  is a  primitive-fagon-number string altough the counter appears within the accolade but in 

the admissible form. 

 

The meaning of  primitive-fagon-number strings will become clear soon: they are the number strings 

that lead exactly to the primitive recursive functions as they are known in normal recursive function 

theory [6] . If one uses them in the program field for a binary function say of addition  

FAGA1212 it is guaranteed that the computation halts for all input. 

 

An fagon-number string that is not a  primitive-fagon-number string is called a complex-fagon-number*) 

string. 

 

In the arithmetical universum of number strings fagon-number strings are very scarce and even more 

so primitive-fagon-number strings, you may compare it to stars in the relatively empty physical 

universe. And yet, what a beautiful and big world is the physical universe and what a beautiful and big 

world is the arithmetical universe! 
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4. FAGACUS computer 

4.1 Direct coding and fields 

I always found Gödel numbering something weird, as it is entering the considered systems from the 

outside.  That the original method  used prime numbers had its special yet strange touch but did not 

bother me. That and my deep trust in the finity of language is what lead me to  
 

(idea 4) direct coding instead of cumbersome Gödelisation. 
 

By direct coding I mean that every number string can be interpreted as a primitive recursive function 

and that for every primitive recursive function there is a number string which is its code. Codes and 

number strings are the same. You will get a first feeling what I mean by a coding of functions by 

numbers if you look at the following example, where you will also understand why I write the numbers 

8 and 9 with synonymous characters  { and } , which leeds to a tree structure. 

 

The binary function of  addition x+y of two numbers is coded by the number string 

8089019818908902 or synonymous form {0,01}{1,0,02} and given the name  as number-

constant. It means that there are input fields 01 and 02 , that the value 01of the field  01 is put into 

field 0 and then the value of this field 0 is incremented by one when the scratch field 1  runs from 

value 1 to the value 02 of field 02 , if the field 02 has value 0 nothing is done in the second part. As 

you see accolades { ... } are used as loops*) (like do-loops in applied computing). 

 

Like an Abacus or a Register computer the FAGACUS computer has an unlimited memory with 

unlimited fields*) that are used during the computation to store values, e.g.01as value field 01 , 

where the symbols are just used inside the codex. There is an additional register*) field in the 

memory that is not addressable inside a program, it contains the number of the program to be 

computed. The fields are referenced by numbers according to the following convention: 
 

program-register field 00  
input fields 

by prenulled octal numbers 
output 

field 
scratch fields 

by octal numbers 

... 012 011 010 07 06 05 04 03 02 01 0 1 2 3 4 5 6 7 10 11 12 ... 

 

Table 6. FAGACUS computer memory fields 
 

output-field*) ::  0 
input-field*) ::  0  octal-cipher  ¦  input-field   octal-numeral 
scratch-field*)::  octal-cipher  ¦  scratch-field  octal-numeral 
field ::   output-field  ¦  input-field  ¦  scratch-field   
program-register :: 00 
 

0
 output field

 


arity Arbacus computation

 
prog. reg. f. input fields 00 01, 02, ...

 

 


arity Arbacus computation
 

0
 


arity Arbacus computation

 
prog. value input values 

description with fields description with values 

 

 

Figure 2. FAGACUS computer with fields 

 
A computer works step by step. By step I mean the smallest units in a computation, that will be given 

in the next section for the FAGACUS computer.  
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4.2 Computation rules 

After these preliminaries I have to go into the details of  

 

(idea 5) FAGACUS computer with a new programming language without referenced branching. 

 

I will define the new programming language that I call A0. It is a command language as opposed to 

proposition languages Funcish and Mencish. Actually it is an interpretative language as will be seen 

(in applied computing the best known interpretative language is BASIC). A program is given by an 

fagon-number string, which is interpreted in the following way. Besides the empty command {} that is 

abbreviated by the comma there are only the two following commands: 

 

S succeed, replace the actual value of a field by its successor   e.g. 12 

 

R repeat performing an accolade {...} of commands   e.g. {1  , 2{4}  3} 
enclosed by acco and lade a certain number of times, 

as given by the limit value in the lade-field with the acco-field carrying the counter of the step, 

do nothing if the limit value is zero, in this case the counter field has value zero after performing; 

before the accolade is performed the acco-field is set to zero, it then starts with one 

at the end the acco-field contains the the limit value of the lade-field 

 

Two special cases of the repeat command: only one  field or one pair of fields in accolade: 

 

D delete, put the value to zero      e.g. {13} 
 

C copy the value of the second field to the first   e.g. {4,03} 
 

At the start of a computation firstly all fields are initialised to zero, then the input fields 01  02  03  ... 
to the values of the input argument starting from the left. If the arity of the argument is higher than the 

highest input field just ignore the higher ones. If the arity of the argument is less than the highest input 

field the values of the exceeding input fields are put to zero through the initialisation. 

 

Computation starts from the left and proceeds to the right, a cursor moves through the digits of the 

number string. The output is in field 0. The only backspacing can occur at the end of an accolade. This 

is where non-halting may occur, e.g. fagon-number 1{0{0}1} never halts, as you see from the table: 

 

step field  0 field  1 command   

0 0 0 initialise   

1 0 1 succeed   

2 0 1 initial value   

3 1 1 succeed as limit not yet reached   

4 0 1 delete   

5 1 1 succeed as limit not yet reached   

6 0 1 delete   

...   and so on forever  Table 7. example program computation 

 

The above example is not a  primitive-fagon-number string. All  primitive-fagon-number programs halt 

when applied to any input. The beauty of programming language A0 lies in the fact that one can check 

the sufficient condition of program halt that governs all primitive recursive functions. It is trivial that 

all primitive recursive functions and only the primitive recursive functions can be obtained by applying 

the FAGACUS computer to a primitive-fagon-number string as program. The power of A0: you can 

program " if-then-else" (let  a and b be two example numbers without scratch-field collision) :   

 

if field 1 has value 0 do a else do b :   {3}3 {2 b {3} {2,1} 1} {2 a 3} 
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4.3 Examples of primitive-fagon-number strings 

 
number-
constant 

description number arity 

n unification**) 0 0 

nf nullification**),  

nullum constantion**) 1)  
{0} 0 

df duofication**), {0}0,0 0 

def decification**), {0}0,0,0,0,0,0,0,0,0,0 0 

id identity, identation**) {0,01} 1 

dpj bi-projection {0,02} 2 

tpj tri-projection {0,03} 3 

' succession {0,01} 0 1 

sig signum, signation**), {1 {0} 0,01} 1 

neg not, logical negation {0} 0 {1 {0} 01} 1 

and and, logical addition {1,01} {2,1,02}{2 {0} 0,1} 2 

lor or, logical multiplication {3} {2 {1,3,01} 02} {2 {0} 0,3} 2 

 addition x+y {0,01}{1,0,02} 2 

 multiplication x*y {2 {1,0,01} 02} 2 

xp exponentiation xy {0} 0 {1 {2,0} {0} {3 {4,0,01} 2} 02} 2 

suxp superexponentiation {0}0{6{4,0}{0}0{5{2,0}{0}{3{1,0,01}2}4}02} 2 

fac factorial x! {0} 0 {4 {1,0} {0} {2 {3,0,1} 4} 01} 1 

prd predecession [x-1] {2} {1 {0,2} 2,01} 1 

tst truncated subtraction [x-y] {0,01} {1 {2,0} {3} {4{0,3} 3,2} 02} 2 

adi absolute difference {5,01} {1 {2,5} {3} {4{5,3} 3,2} 02}
{0,02} {1 {2,0} {3} {4{0,3} 3,2} 01} {1,0,5} 

2 

evy evenness characteristic2) {1 {3,0} {0}0 {2 {0} 3 } 01} 1 

ody oddity characteristic {0} 0 {1 {3,0} {0}0 {2 {0} 3 } 01} 1 

div entire division  [x/y] ,  
if divide by zero successor   

{6,01} 6 {7,6} 
{5  {1 {2,6} {3} {4{6,3} 3,2} 02} {1 {0,5} 6} 7}  

2 

dir entire division remainder,  

[x-[x/y]*y] 

if divide by zero identity 

{0,01} 0 {7,0} 
{5  {1 {2,0} {3} {4{0,3} 3,2} 02} {1 {6,0} 0} 7} 
{2} {1 {0,2} 2,6} 

2 

rt entire root [xroot y] 

is zero if y zero 

is y if x zero 

{6  {7} 7 {1 {2,7} {7} {3 {4,7,6} 2} 01} 
{5,02} 5 {1 {2,5} {3} {4{5,3} 3,2} 7}   
{2} {1 {2} 2,5} {1,0,2} 02} 

2 

lg entire logarithm [logxy] 

is zero if y zero 

is y if x zero 

{0}0 {7} {6  {3,0} {2 {4,0,01} 3} 7 
{1 {2,02} 2 {3} {4 {5,3} 3,2} 0}  
{1} {2 {1} 1,5} {2 {6,02} 1} 02} {0} {2} {1 {0,2} 2,7} 

2 

eqy equality characteristic {5,01} {1 {2,5} {3} {4{5,3} 3,2} 02}
{0,02} {1 {2,0} {3} {4{0,3} 3,2} 01} {1,0,5} 
{1,0} {0} {2 {0} 0,1} 

2 

iey inequality characteristic {5,01} {1 {2,5} {3} {4{5,3} 3,2} 02}
{0,02} {1 {2,0} {3} {4{0,3} 3,2} 01} {1,0,5} 
{1,0} {0} 0 {2 {0} 1} 

2 

miny minority characteristic {2,01} 2 {3} {4 {1,3} 3,2} 02} {0} {2{0} 0,1} 2 

emiy equal-minority charact. {2,01} {3} {4 {1,3} 3,2} 02} {0} {2{0} 0,1} 2 
1) constantion: it gives constant value   

2) warning: in characteristic functions I choose truth value 0 and falsity value 1 .  

I think it is nicer to represent the logical "and" by "plus"; in applied computing one has the error code zero for "no error". 

 

Table 8. Some important primitive-fagon-number strings (to be continued)  
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number-
constant 

description number arity 

pry  primality 

2 3 5 ... 

{0}0 {11} {1} {2 {11,1} 1,01} 1 
{2 {7  {6 {3,10} {4} {5{10,4} 4,3} 2}  
{3 {0,10} 10} 1}  
{3} {4} {5 {3,4} 4,0}  {0}0 {5{0}3} {3{2,11}0} 11} 

1 

npr non-primality 

0 1 4 6 ... 
{{0} {11} {1} {2 {11,1} 1,01} 1 
{2 {7  {6 {3,10} {4} {5{10,4} 4,3} 2}  
{3 {0,10} 10} 1}  
{3} {4} {5 {3,4} 4,0}  {0}0 {5 {0} {2,11} 3} 11} 

1 

 as exercises comment  

decc decimal concatenation e.g. 

{0}0 and {7} gives {0}0{7} 
I write concatenation in short Bavaria-notation1): 

12decc12 

2 

prn prime denumeration 

0 for 0, 2 for 1, 3 for 2 ... 

using majorant suxp 

 1 

  bijectively coding a pair of numbers by one number  

pair pair antidiagonal method 

((j+k)²+3j+k)/2 
  columns k 2 

 rows j 0 1 2 3 4 5 6 7 ... 

 0 0 1 3 6 10 15 21 2{  

row row antidiagonal method 

n-(d(n)(d(n)-1))/2   

where d(n) = 

[(1+ entire 2root(1+8n))/2] 

 1 2 4 7 11 16 22 2}   1 

 2 5 { 12 17 23 30    

 3 } 13 1{ 24 31     

 4 14 1} 25 32      

 5 20 26 33       

col column antidiagonal method 

(d(n)(d(n)+1))/2-1-n 
 6 27 34        1 

 7 35         

 ...          
 see chapter 5   

fagy fagon-number characteristic  1 

ufagy unary fagon-number characteristic 1 

dfagy binary fagon-number characteristic 1 

...   

hery herbum-number characteristic  1 

pary primitive-fagon-number characteristic 1 

cary complex-fagon-number characteristic 1 

 see chapter 6   

hxpg hyperexponentiation generator 1 

hicg hyperincrementation generator 1 
1) does not collide with other string forming rules 

Table 8. Some important primitive-fagon-number strings (continuation) 

 

I rewrite the number iey for the equality characteristic of the above table. With the usual characters 

for eight and nine I get the following more familiar form of a number that is close to 1095 . If you think 

that this is a big number, just wait for sections 6.5 and 6.6 : 

 

8589019818 2895983984 8589393892 9029808902 9818289098 3984808939 3892901981 
8908959818 9098092808 0919 
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5. FAGATOR calculator 

5.1 Bootstrap mechanism 

So far I have described the action of an FAGACUS computer when it is fed a primitive-fagon-number 

as program. What happens in the two cases when the given number  is not a primitive-fagon-number  ? 

 

In the first case it is a herbum-number  , i.e. not an  fagon-number . The above rules  for computation 

cannot be applied and therefore I assign arbitrarily that the  FAGACUS computer does not halt in this 

case, but rather keeps on forever.  

 

In the second case it is a complex-fagon-number. In this case one can apply the above rules but there 

are two possibilities when applied to a certain input, either the computer halts after a finite number of 

steps or it does not. At the moment I do not go into the question if it can be decided whether it halts or 

not. In any case that is where the problems may arise, the predetermined breaking point, if you wish. 

 

The important thing is that there exist primitive-fagon-number strings fagy, hery, pary and cary 

that give rise to characteristic functions via fagation by which it can be checked if a number string is 

 
- fagon-number 

- herbum-number*)  
- primitive-fagon-number  
- complex-fagon-number 
 

1fagon-number1TRUTH1fagy 0 

1 herbum-number1TRUTH1hery 0 

1 primitive-fagon-number1TRUTH1pary 0 

1 complex-fagon-number1TRUTH1xary 0 
 

I do not go into the concept of truth in this publication, just note that I have written the metaproperty 

TRUTH  with a first capital letter; by this I indicate that this is in general not a decidable metaproperty, 

whereas a metaproperty like fagon-number is decidable. 

 

I talk about a bootstrap*) mechanism as one can apply fagy to itself and gets  fagyfagy0 

thereby stating  primitive-fagon-numberfagy  
 

These primitive-fagon-number strings are  rather difficult to construct and are not developped in this 

publication. I just sketch how a programmer has to proceed in the construction of fagy . If you are 

familiar with primitive recursive functions it is immediately clear that these characteristic functions are 

primitive recursive. The necessary loops that run over all characters from left to right the number  

string have of a luxurious majorant given by the number string itself. 

 

- Firstly one has to check the acco-lade-structure: starting from the left one checks digit by digit if 

the count of accos { never gets below the count of lades  } and that if at the right end  the two 

counts match. 

- Secondly one checks that no {{ or }} occur 

- Thirdly one checks that it does not contain multiply prenulled octal numbers.  

 

For the construction of pary one fourthly checks that the counter and limit fields of all accolades do at 

most appear inside the accolade as limit fields or in the fast-finish-form { counter , limit } . 
 

The intrinsic top-down-structure of the command language A0 allows  for a check if a number string is 

a primitive-fagon-number string. I do not see a similar possibility for a command language with 

referenced branchings (like in Abacus- or Register-programs). 
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5.2 Two-layer-computation for fagation 

Now everything is prepared to define the full action of  the calculators FAGA... when applied 

to  arguments of program in first position and normal input in the adjoining positions, e.g. 

multiplication with binary input:   

 

FAGA{{2{1,0,01}02} 7341{ 7341{ {2{1,0,01}02} 
 

primitive-term*) :: number-argument number 

 

Every number can be applied to every number-argument . If the arity of the number does not coincide 

with the arity of the number-argument the calculators obeys the following rule: 

 

- argument positions that are higher than the arity of the number are ignored 

- missing argument positions that are required due to the arity of the number are taken as zero 

 

Remember, per definitionem a computer may or may not halt, a calculator always halts. A program 

can be performed on a computer or on a calculator. Now I am going to construct the fagation 

calculator from the FAGACUS computer. To this end I introduce  

 

(idea 6)  FAGATOR two-layer-calculator for primitive recursion, as a new paradigm. 

 

In a single calculation more than one application of a computer may occur; infinitely many 

applications would not make sense. Some finite logic may connect the various layers*). The important 

rule for the multiple application of computers within calculators is that no-halt-situations are excluded. 

There is no reason why the so defined calculator should not be used more than once, i.e. in many 

levels*) of a calculation, as I will show in the next section. 

 

In concrete calcule NU two layers are sufficient, where I use bootstrap mechanism with pary on 

layer 1 in order to check if the given program is a primitive-fagon-number string; you get this result 

after a finite count of steps. On layer 2 the actual computation is performed; as no non-halting loops 

can occur you get a result after a finite count of steps. For herbum-number strings the trivial result is 

zero , I call them Nully **) . The overwhelming majority of number strings is Nully (see also remark at 

the end of section 3.3). The following simple diagram describes the new calculator: 

 

 

put value into field   

performs computation, 

that always halts 

yes 

0 

0 

no 

layer 1 

layer 2 

exit 

0 : 0 

checks if given program number  

is  primitive-fagon-number 
0

 

pary 00
 

 


unary FAGACUS computation
 

0
 

00 01, 02, ...
 

 


arity FAGACUS computation
 

FAGATOR 

 
 

Figure 3. Flow-diagram fagation calculator (see table 6 and figure 2 ) 



18.05.2019                                    Church's thesis is questioned by new calculation paradigm                                   17 of 32 

6. Investigating fagations 

6.1 Definition of pattern , term and scheme strings 

In the following I will no longer talk of functions but only of scheme strings. As you may have noticed 

I have only used the word "function" in  common language but I have never used a word function in 

metalanguage Mencish. There is deeper meaning in  that as functions are equivalence classes of 

scheme strings (of denumerably infinite cardinality), but I will not go into this any further. 

 

I define pattern*)  strings: 
 

pattern-array ::   pattern  ¦  pattern-array    pattern 

pattern-argument ::      ¦   pattern-array  
pattern ::    number-dingus  ¦  pattern-argument  pattern 

 

A pattern string without a number-variable is called term*) string, a term string can be called a nullary-

pattern**) string. A pattern string with at least one number-variable  is called scheme*) string. 

According to the highest appearing number-variable one has positary-scheme**) i.e. unary-scheme, 

binary-scheme, trinary-scheme  ... strings, I speek of  free arity. 

 

According to the count of different number or number-constant strings one has once-parametric-

scheme,  twice-parametric-scheme,  thrice-parametric-scheme ... strings, I speek of  parametric arity. 

 

6.2 Primitive recursion and  primitive-scheme strings 

Now that the proper language is installed I am prepared to investigate the concrete calcule NU that 

gives rise to fagative**) functions that are given through scheme strings and whose evaluation are 

written as term strings. 

 

The calculators of all arities has been designed to perform calculations for a given program number 

string and input number strings of given arity, e.g. the addition of  3 and 4  by 34{0,01}{1,0,02} 7

that one can abbreviate by using the number-constant  string  to give 34 7 . In the language 

of the preceding section 34{0,01}{1,0,02} and 34  are term strings. 

 

What I am interested in now are primitive-scheme strings, e.g. the binary addition with two number-

variable strings 12 which I call a binary-primitive-scheme string, as it contains number-variable  

strings in the input argument positions and a number-constant string in the program position.  

 

primitive-scheme*) ::  number-dingus-argument  number-constant  ¦   
number-dingus-argument  number 

 

A scheme string that is not a primitive-scheme string is called a complex-scheme*) string. 

 

In section 4.2 it was remarked that it is trivial that all primitive recursive functions and only those can 

be obtained by applying the FAGACUS computer to a primitive-fagon-number string as program. It is 

also immediately clear that the FAGATOR calculator produces all primitive recursive functions and 

only those, by applying it to number strings; in the first layer all  non-primitive-fagon-number strings 

are singled out to produce nullification (function that is always zero). In the second layer the actual 

calculation is performed. Primitive fagative is the same as primitive recursive. 

 

One does not have to worry that so many numbers give rise to nullification and that for every function 

there is an infinity of possible primitive-fagon-number strings. There is room enough for everybody. 

Such is the world of numbers: very big. 
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6.3 Multilevel-calculations for fagation, primative-scheme and exotic-scheme strings 

So far it may look that fagation is just another method to calculate primitive recursive functions. But 

let us look at composition of functions. Composition of functions means that one inserts one function 

into another, e.g. the simplest case in traditional notation f(g(x)) . Of course one can do this with 

scheme strings and obtain other scheme strings, actually I have already done this when recursively 

defining scheme strings in section 6.1 .  

 

In section 3.2 I have already singled out the first argument position of the calculator functions e.g. 

FAGA123231 by using synonymous Bavaria-notation, that puts the program number 

behind the argument. The reason1) was that the program number (in the example 1) of the first 

position is treated completely different from the input-argument (in the example 23 ) that follows 

it. In a completely natural way there appears 

 

(idea 7)  multi-level-calculation including procession*)  for non-primitive functions. 

 

It means that there are two types of compositions, with far reaching consequences. I call it 

primative**) when the insertion happens in the input-argument and I call it processive**) when the 

insertion takes place in the program number. If one inserts functions into each other one has various 

levels of composition, that is why I call it multilevel-calculation*).  

 

A scheme string is called a primative-scheme string, when all insertions are primative, otherwise it is 

called a processive-scheme string. A scheme string is called an orthodox-scheme*) string, when no 

number-variable strings appear in the place of program number, otherwise it is called a paradox-

scheme*) string. A scheme string is called a conventional-scheme*) string, when it is both a primative-

scheme and an orthodox-scheme string. A scheme string that is not a conventional-scheme string is 

called an exotic-scheme*) string. 

 

As long as one has  conventional-scheme strings and inserts them into each other in input positions, or 

as I say uses primation**) only, one stays in the world of conventional-scheme strings, is it closed 

under this type of composition. This corresponds to the fact that primitive recursive functions are 

closed under composition.  

 

Theorem A:   1234421 43

 

Proof idea: 

There is a primitive-fagon-number uuc such that 3 12uuc , the result is a concatenation 1 

{1}{2}...{01,0} {0} 2 with sufficient scratch field deletions in between. 

 

All theorems of that type can be combined in metatheorems 

 

Metatheorems A: Every  conventional-scheme string can be replaced by a primitive-scheme string 

 

1  unary-conventional-scheme1 

2 number2 TRUTH11 12 
 

1  binary-conventional-scheme1 

2 number2 TRUTH121 122  
... 

 

 
1) besides abbreviation an aesthetical reason for this notation is given by the direction that the calculator works: first the 

memory is filled with the values of input and then (after the program check) the computation cursor starts moving from left 

to right (except for backward jumps at the end of accolades) 
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6.4 Procession and generators 

I brought up idea 4  of direct coding which says that every number string is a program although the 

most number strings just lead to the constantion zero. But it brings a a completely new quality into 

calculation: you calculate a  number string and use this as a new program. When I write it in Bavaria-

notation it becomes clear why I call it procession, look e.g. at the following scheme as an example: 

21{1}1 
 

Like in most cases the first result is trivial, i.e. 1{1}10 and as 201 the result is the unication 

(it gives constant value 1) .  
 

But I can force interesting results when the first result is itself a nontrivial  primitive-fagon-number 

string. Look at the following examples of identation and hidden addition: 

 

21{0,01}21 

 

12{0,01}{1,0,02{'12{0,01}{1,0,02}12 

 

Besides similar rather amusing constellations there is the very important case that the first result is a 

nontrivial  primitive-fagon-number string for all input. I say that the the first program primitive-fagon-

number string is a Generator-number*) string. It is not decidable by a general method if a primitive-

fagon-number string is a Generator-number string, but this poses no problem. One has to demonstrate 

this in every single case. 

 

By the way generator-technique is well established in applied computing (so-called fourth-generation-

languages, where here the word "generation" has nothing to do with generating, but with progress). 

 

In section 6.5 and 6.6 I will give important examples for the generator-technique. It will turn out that 

problems that have lead to the extension from primitive recursive functions to recursive functions (via 

the inclusion of minimisation) are so much easier solved with processive-scheme strings. 

 

6.5 Hyperexponention  

The following series of binary functions was first given by Hilbert [1] p.185: hyperexponentiation**), 

ordered by degree.  The binary input in fields 01 and 02 is called base and power. 
 

number-
constant 

description primitive-fagon-number 

mp 

0hxpg 

multiplication  variant x*y 

hyperexponentiation degree 0 
{2,02} {0}  
{3 {1,0,01} 2} 

^ 

1hxpg 

exponentiation variant xy 

hyperexponentiation degree 1 
 

{4,02} {0} 0 {5  
{2,02} {0}  
{3 {1,0,01} 2} 4} 

^^ 

2hxpg 

superexponentiation  

hyperexponentiation degree 2 
 

{6,02} {0} 0 {7  
{4,02} {0} 0 {5  
{2,0 } {0}  
{3 {1,0,01} 2} 4} 6} 

^^^ 

3hxpg 

supersuperexponentiation

hyperexponentiation degree 3 
 

{10,02} {0} 0 {11 
{6,02} {0} 0 {7  
{4,0} {0} 0 {5  
{2,0 } {0}  
{3 {1,0,01} 2} 4} 6} 10} 

... and so on  
 

Table 9. Hyperexponentiation primitive-fagon-number strings (for binary scheme) 
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Looking at the last columns one immediately can see the rule for the generator which works up to a 

given degree by concatenation of the slightly manipulated (2 : leave away 2  from 02 ) preceding 

string in front and at the rear with two number strings that follow a simple rule. 

 

It is not difficult to construct a possible number hxpg  although it may be very lengthy, just think of 

the starting number (in usual decimal notation 828 902 980 983 818 908 901 929 ) for input 0 . 

You do a loop with the degree as limit and then you concatenate two numbers, one in front, one 

behind. These pre- and post-numbers follow a simple rule. Concatenation can be built from simple 

primitive-fagon-number strings of table 8 and one needs some rather lengthy constantions like e.g. the 

above starting number. 
 

231hxpg is a trinary-processive-scheme with degree1 , base2 and power3 . 
 

In a very natural and simple fashion I get the special case of the Ackermann function that is contained 

in hyperexponentiation, as given by Hilbert [1] p.185 . When defining these functions with 

minimisation it is quite complicated. Have you ever seen a textbook where the mimimisation for the 

Ackermann function has been written down explicitely? Here it is obtained without leaving the con-

crete calcule NU that is based on primitive recursive functions but obviously allows for much more. 
 

 21 2^1 2^^1 2^^^1 2^^^^1    
degree 

power 
0 1 2 3 4 ...   

0 0 1 1 1 1 ...   

1 2 2 2 2 2 ...   

2 4 4 4 4 4 ...   

3 6 8 16 65336  ...   

4 8 16 65336   ...  Table 10. Hyperexponentiation  

...        lowest values for base 2 

 

 

In the preceding section I have said that one has to prove the Generator property of a number string in 

every single case. 

 

Theorem B: Existence of a Generator-number hxpg for hyperexponentiation. 

Applied to a number string it produces a primitive-fagon-number string. 

 

11hxpgpary 0 
 

Proof idea: follows from the very construction 

 

I call a direct proof in a concrete  calcule a demonstration; besides that one can prove by deductions 

too. It is a very intersting question and a big field of future work to find out what rules govern the 

demonstrations  in a concrete calcule.  

 

I have shown an example that via procession one can construct other scheme strings within the 

concrete calcule NU of decimal fagation natural numbers that calculates genuinely recursive functions, 

e.g.the hyperexponentiation. These scheme strings are complex. 

 

6.6 Hyperincrementation 

You may think that the unary-scheme as obtained from hyperexponentiation, where base  power and 

degree have the same value 111hxpg is an extremely fast growing function. But one can do 

even better. 
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I introduce the concept with the innocent name of hyperincrementation**); it means the series of 

fastest growth ( incrementatio citissime) given by unary-scheme strings. 

 

A rather metaphoric comparison: just as the velocity of light poses an upper limit for all physical 

motions the consecutive hyperincrementation poses an upper limit for the numbers that can be 

calculated with a certain expenditure. 

 

The size of an fagon-number string is defined by the count of fields that appear in it. The  size is 

calculated by a primitive-scheme string through a primitive-fagon-number string siz. The count of 

accolades, i.e. matching pairs { } (which includes commas) is equal to size if the number string ends 

with character }  and the predecessor of size if the last digit is an octal number 

 

The idea is: when you look at a primitive-fagon-number string you can ask: what is the fastest growth 

you can produce with a primitive-fagon-number string of the same size.  

 

Another measurement in this context is the depth given by dep that gives the maximum of nested 

accolades, because in nesting of accolades you get the best explosion rate. 

 
number-
constant 

description measurements number 

dp

0hicg 

duplication  2x        

degree 0 

size 5 , depth 1 {0,01} {1,0,01} 

ic

1hicg 

incrementation  2x x       

degree 1 

size 9 , depth 2 {0,01} {1 {2,0}  
{3,0,2} 01} 

sic

2hicg 

superincrementation  

degree 2 

size 13 , depth 3 {0,01} {1 {2,0} 
{3 {4,0}  
{5,0,4}2} 01} 

ssic

3hicg 

supersuperincrementation  

degree 3 

size 17 , depth 4 {0,01} {1 {2,0} 
{3 {4,0} 
{5 {6,0}  
{7,0,6}4}2} 01} 

... and so on   

 

Table 11. hyperincrementation primitive-fagon-number strings (for unary-scheme) 

 

And again I have a relatively simple generator hicg for this series, where the members are unary-

scheme strings that grow eventually faster than any other unary-scheme string of the same size. It can 

be constructed along similar lines as shwown in the preceding section for hyperexponentiation. 

 

Problem: find the series for nullary hyperincrementation, i.e. the primitive-fagon-number strings that 

produce the largest output without any input field for a given size of the string (it may be a little tricky 

for small sizes). 

 

6.7 Majorant scheme strings 

As hyperincrementation functions are the fastest growing functions for a given depth, they  allow to 

determine majorants for all primitive-scheme strings. 

 

Theorem C : A certain degree of hyperincrementation provides an eventual majorant for unary-

primitive-scheme strings 

 

123 434emiy n4142hicgemiy n
 

where emiy is the equal-minority-characteristic 
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Proof idea:  

 

If 1 is not a primitive-fagon-number it is trivial, take  20 

Otherwise take  1depth' as 2 

 

Problem: find a total majorant for unary-primitive-scheme strings (that also takes care of small input 

values). Using that majorant one can also give a majorant for the count of steps that is needed in the 

calculation of the values of the unary-primitive-scheme string for a value (just multiply by the size of 

the program number ). 

 

6.8 Other  exotic-scheme strings , especially paradox-scheme strings 

In the preceding sections there were processive-scheme strings like hyperexponentiation and 

hyperincrementation as examples of exotic-scheme strings. As another example of a processive-

scheme string take the denumeration (with repetitions) of all generated unary-primitive-scheme strings 

with two levels: 

 

A binary-bis-procession-scheme string:   21col 1row 

 

and its diagonal      11col 1row 

 

There are other even more exotic exotic-scheme strings in concrete calcule NU of decimal fagation 

natural numbers, paradox-scheme strings that have at least one number-variable string in a program 

position. The simplest example is 

 

the zero value unary-paradox-scheme:   n1 

 

There are paradox-scheme strings that do not contain any number or number-constant strings. I call 

them ex-nihilo-scheme*) strings, they seem to come ex nihilo, from nowhere. Two simple examples are 

 

the diagonal unary-ex-nihilo-scheme string:  11  

the trinary-ex-nihilo-scheme string:   321  

 

The above diagonalisations do not lead outside fagative functions as the diagonalisation only relates to 

a class of fagative functions, the results are proper scheme strings. 

 

It is clear that exotic-scheme strings do not give primitive recursive functions. What then? Do they 

correspond to recursive functions? It was shown that in section 6.5. and 6.6 that at least some 

processive-scheme strings like hyperexponentiation and hyperincrementation do. In sections 7.4 and 

8.1 I will further discuss this question. 
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7. Metainvestigating fagations 

7.1 Definition of phrase , sentence and formula strings 

In section 6.1  I have defined scheme strings that give rise to functions. Now I am going to define 

phrase*)  , sentence and formula*)   strings (the latter giving rise to relations). 

 

positive-nullitive-phrase :: pattern  nullum-thing  ¦  nullum-thing   pattern 

negative-nullitive-phrase :: pattern  nullum-thing  ¦  nullum-thing   pattern 
nullitive-phrase**) ::  positive-nullitive-phrase  ¦  negative-nullitive-phrase 

positive-equitive-phrase :: pattern1  pattern2 

negative-equitive-phrase :: pattern1  pattern2 
equitive-phrase**) ::  positive-equitive-phrase   ¦  negative-equitive-phrase 
 

The binary metarelation bound-in means that the number-variable does appear bound. The binary 

metarelation free-in means that the number-variable appears genuinely, but not bound, and therefore 

can be bound. phrase strings are constructed metarecursively from equitive-phrase strings by junctive 

logic and quantive logic operators: 

 

1  phrase1  equitive-phrase1

234    number-variable3 free-in23

 phrase2 phrase41 3  1 2   4  

1 2   4  1 2   4  1 2   4  

13  2   13  2   
 

A phrase string without a free number-variable string is called nullitive-phrase or sentence string,  a 

phrase string with free number-variable string  is called formula string. A formula string has an arity 

??? that is given by the highest  free number-variable string. 

 

arithmetic-prog-number-thing :: nullum   ¦  {0}  ¦  {0, input-field }  ¦ 

'  ¦  {0,01} 0  ¦   ¦  {0,01}{1,0,02}  ¦    ¦  {2 {1,0,01} 02} 

arithmetic-pattern-array ::  arithmetic-pattern  ¦  arithmetic-pattern-array    arithmetic-pattern 

arithmetic-pattern-argument ::     ¦   arithmetic-pattern-array  
arithmetic-pattern*) ::   number-dingus  ¦   

arithmetic-pattern-argument  arithmetic-prog-number-thing 
 

You get arithmetic-phrase, arithmetic-sentence and arithmetic-formula  strings if you replace in the 

above definitions pattern by arithmetic-pattern and phrase by arithmetic-phrase accordingly. The 

arithmetic-scheme strings correspond to the multinomials; example  of a trinary multinomial in 

traditional notation:  3 + 7 x3 + 2 x1
2 x2 + 53 x1

3 x2
5 x3

6 .   

 

7.2 Arithmetic representability of fagative functions  

Already the first result of Gödel's famous paper [2] of 1931 was quite surprising: all primitive 

recursive are arithmetically representable. I can transfer this result immediately to calcule NU : 

 

Metatheorem B: All primitive-scheme strings of a given arity are arithmetically representable 



1number12binary-arithmetic-formula2

TRUTH1211=22



1number12trinary-arithmetic-formula2

TRUTH123121=32and higher arities ... 
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And as conventional-scheme strings can be replaced by primitive-scheme it holds 

 

Metatheorem C: All conventional-scheme strings are arithmetically  representable 

 

In the Princeton group [4] [5] of 1936 it was shown that all recursive functions are arithmetically 

representable too. How about fagative functions, is there a corresponding metatheorem for exotic-

scheme strings?  I can show it immediately for those processive-scheme strings that are known to give 

recursive functions, like e.g. hyperexponentiation. 

 

Metatheorem D: Hyperexponentiation is arithmetically representable 

 

1quaternary-arithmetic-formula1

TRUTH1234231hxpg=41 
 

Proof idea: take the same arithmetic-formula string 1 as one has for recursive functions. 

 

So far I have shown that all conventional-scheme strings and some exotic-scheme strings are 

arithmetically representable. This brings up the interesting question if all scheme strings are 

arithmetically representable.  In section 7.4 I will further discuss this question. 

  

7.3 Undecidable sentences and the identity problem 

With respect to undecidability  theorems and metatheorems there are no changes in concrete calcule 

NU in comparison to recursive functions: there is no general effective decision procedure. For 

simplicity I just take the unary case and define Nully , Unnully**) , Posy**) and Unposy**) strings (for 

some strange reasons in mathematical logics Unposy is called regular, although this word is used in 

other areas of mathematics in some other completely different meanings).:  



1  number1

     unary-primitive-Nully1TRUTH1110

  unary-primitive-Unnully1TRUTH1110

  unary-primitive-Posy1TRUTH1110

  unary-primitive-Unposy1TRUTH1110



1 2   number1  number2

  unary-primitive-equality12TRUTH11112
 

Decidability refers to sentences. At what tier of languages (see section 2.2) does one talk about 

decidability? A decision for a sentence string is a mapping of the sentence string to a value true  or 

false. Such a mapping can be performed by a calculation only with respect to numbers that appear in 

the sentence string of a class of sentence strings. As two examples:  

 

Primitive decision means that a primitive-scheme string is to be evaluated. 

Effective decision means that an effective-scheme*) string is to be evaluated. 

 

Theorem D: Primitive undecidability if a number string is unary-primitive-Nully or unary-primitive-

Unnully or unary-primitive-Posy or unary-primitive-Unposy 



122103320 



122103320 
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122103320 



122103320 
 

Proof idea: (for the first case unary-primitive-Nully , other cases similarily) 

 

Suppose the contrary 122103320 

Choose 2as a concatenated string constructed from such an1 as: 21 {2,0}{0}0{1{0}2} 

This gives the negation of 1 

Insert 1 {2,0}{0}0{1{0}2}10331{2,0}{0}0{1{0}2}0 
And there is the desired contradiction 

 

Theorem E: Primitively undecidability of unary-primitive-equality of unary-primitive-schemes strings 



123231n44243 
 

Proof idea: 

Applying equality characteristic eqy it can be reduced to the question if a string is unary-primitive-

Nully as the unary-scheme string of  the equivalent equitive-phrase  4243eqyn can be 

replaced by  a concatenated unary-scheme string42 4 3 5 eqy where N4 stores the result in a 

scratch field that is not in 3 and inititalises output field and scratch fields of 3 and 5 puts the stored 

result of 2 into field 01 and the output of 3 into field 02 and inititalises output field and scratch 

fields of eqy . 

 

Let me return to the proof idea for the first case unary-primitive-Nully . One could think that the 

decision procedure of evaluating  a unary-primitive-sentence string was chosen too simple. There are 

more possibilities, i.e.  unary-effective-sentence strings. 

 

effective-phrase*) strings are constructed metarecursively from equitive-phrase strings by junctive**) 

logic and limited quantive**) logic operators. Remember 12emiyn  means 1 less-equal2 

 

1  effective-phrase1  equitive-phrase1

2345      number-variable2 term3

var-free-in23 var-free-in24 effective-phrase4

 effective-phrase5

1 2   

1 4   5  1 4   5  1 4   5  

12  23emiyn   4   

12  23emiyn 4   

 

The binary metarelation var-free-in  means that the first string appears properly free in the 

second (1 does not properly appear in 11). Every effective-phrase string can be calculated 

effectively for every booking of its number-variable strings. A booking is a replacement of number-

variable strings by number strings. 

 

Metatheorem F: Effective undecidability if a number string is unary-primitive-Nully or unary-primitive-

Unnully or unary-primitive-Posy or unary-primitive-Unposy ,  the first case for shortness, where the 

metafunction INSERT inserts the third string in  the first string whereever the second string 

appears properly as a number-variable string 



1unary-effective-scheme12number2

TRUTH INSERT1121120
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Proof idea: 

One proceeds in a similar fashion as was used in the last theorem. One reduces the problem to the 

question if there is an equivalent string for the unary-effective-scheme string that is unary-primitive-

Nully . Some of the tools are already in the toolbox of table 8 in section 4.3 : negationneg, 

conjunctionand , disjunctionlor , equality eqy , inequality iey , equal-minorityemiy : 

implication, biconditional are straightforward and others for limited omnication**) and for limited 

existication**) e.g.112emiyn... and112emiyn...  can be 

added in a fashion similar to Cutland [6] p. 38. Without further discussion: 

 

Metatheorem E: Effective undecidability if a number string is primitive-Nully or primitive-Unposy  

Metatheorem F: Effective undecidability if a scheme string is Nully or Unposy  

 

It will be interesting to further investigate the matter of decidability. For the moment it is enough that 

the concrete calcule NU has undecidabilities and the identity problem. But as decidability depends on 

the concept of calculability one should always treat that concept first and decidabilty second. 

 

7.4 Fagative versus recursive functions 

What did I achieve by introducing concrete calcule NU of decimal fagation natural numbers with its 

fagative functions in comparison to recursive functions? It is visualised in the following figure: 
  

 

A 

not recursive 

not arithmetically  

representable 

recursive 

 

 

 

fagative 

2 
 

 

not 

fagative 

arithmetically  

representable 

B C 

F E 

D 

G 

 

 

primitive 

recursive 

3 1 

 

 A primitive recursive arithmetically representable not empty 

 B fagative and recursive 

(and not primitive recursive) 

arithmetically representable not empty 

 C fagative and not recursive arithmetically representable may be empty 

 D fagative and not recursive not arithmetically representable may be empty 

 E recursive and not fagative arithmetically representable may be empty 

 F extravagant 

(not recursive and not fagative) 

arithmetically representable may be empty 

 G extravagant not arithmetically representable may be empty 

 

Figure 4. Set diagram of calculable decimal functions 
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In principle there are seven areas but the areas C , D , E , F or G could be empty. As fagative functions 

contain all primitive recursive functions area A is not empty. As fagative functions e.g. contain 

hyperexponentiation that is not a primitive recursive function but a recursive function area B is not 

empty either. Areas F and G will be discussed in section 7.5 ? How about areas C , D and E ? 

 

Church's calculability thesis states that areas C , D , F and G are empty. If one of the areas C and D 

were nonempty it would mean that Church's calculability thesis is false, as there were calculable 

functions that are not recursive functions. This conjecture can be formulated as a metasentence about a 

concrete calcule MU that allows for a precise description of both recursion and fagation. In order to 

talk about both in one calcule one needs two more calculators loop... and halt...that operate for 

a given number of steps in addition to the calculator FAGA..., but I cannot discuss it here.  

 

There seems to be a good chance that at least some paradox-scheme strings can be shown to lead to 

recursive functions. Perhaps one can adapt the method that Cutland [6] p. 85-99.  describes for 

universal functions. Perhaps can simulate the action of the calculator by means of a fix program that I 

call interpreter following the language of applied computing (compare the programming language 

BASIC in applied computing). Of course the interpreter has to include the check if a number string  is 

a primitive-fagon-number string.  

 

In principle exotic functions may appear in areas C and D. Then the "Diagonal lemma" [7] and Gödel's 

first incompleteness thesis would need another justification. Otherwise one has to show that exotic 

functions all belong to area B. 

 

If area E were nonempty it would mean that there are recursive functions that are not fagative. I doubt 

it but I cannot prove it. This conjecture can be formulated precisely as a metasentence of the above 

sketched concrete calcule MU that allows for a precise description of both recursion and fagation.  

 

Suppose it can be shown that areas C , D and E are empty, then recursive and fagative functions are 

the same. That looks like a nice result, but what would be gained? A lot, as fagative functions are 

effectively denumerable as opposed to recursive functions. This is the cornerstone that following 

section is built on.. 

 

7.5 The extravagant Spark-function 

I am aiming for a calculable function that is not fagative. It is obvious that the diagonal method  is a 

sensible choice. Alonso [8a] quotes Kleene that he had realised that one cannot apply the diagonal 

method for recursive functions: "When Church proposed this thesis, I sat down to disprove it by 

diagonalising out the class of the lamda-definable functions. But quickly realising that the 

diagonalisation cannot be done effectively, I became overnight a supporter of the thesis". 

 

Although the programs that give rise to recursive functions are effectively denumerable, recursive 

functions cannot effectively be marked in that series. This is what I have called the ontology problem 

in section 1.1. It is  not a problem that it is an enumeration with repetitions, and it is not a problem that 

there is the  identity problem of section 7.3 (it is not decidable if two programs belong to the same 

function). It is a problem of marking the good ones. In concrete calcule NU of decimal fagation natural 

numbers I cannot talk about "all fagative functions" either. However, I can do so effectively in its 

metacalcule NU with the decidable metaproperty scheme , e.g. 

 

1unary-scheme1...  and it is a denumeration too: strings are denumerable!
 

If you want: I can effectively metatalk about all fagative functions and therefore I can apply the 

diagonal method. In order to do that properly I have to provide the tools. I start with  

 

(idea 8) three-tier-multi-level-calculation as an extreme paradigm. 
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In the final passage of section 2.2 I have observed that metacalcules are essentially arithmetic: the 

strings of a finite alphabet of characters that a metacalcule is talking about can be considered as multal 

numbers (dual, decimal etc.). This means that one can define all fagative functions for these multal 

numbers. In addition one can define metarelations and metafunctions with reference to the object-

calcule (they start with a capital letter if the involved metaproperty TRUTH is not decidable). 

 

I have defined unary-scheme strings of concrete calcule NU. Obviously it is decidable if strings are 

unary-scheme strings. They contain fifteen characters from a reduced alphabet of 35 characters of 

table 5 in section 3.1, as I do not allow the use of comma instead of {} and of number-constant strings 

for the following considerations about a reduced concrete calcule NU in the reduced metacalcule NU. 

 

0 1 2 3 4 5 6 7 { } 0 1 2 3 4 5 6 7 8 9               

                                   
0 1 2 3 4 5 6 7 { } 1                         
 

Table 12. Reduced alphabets for reduced concrete calcule NU and for unary-scheme strings 

 

The intrinsic fagative functions of the metacalcule NU necessitate trigintiquintal FAGACUS and 

trigintiquintal FAGATOR with some programming language A35 , but that is no problem, actually I 

just need the primitive recursive functions that are included in fagative functions. All the definitions of 

metarelations and meta-functions in preceding sections starting from section 3.1 with suffices that 

small suffices like e.g. fagon-number belong to this class, whereas metarelations and metafunctions 

with suffices that contain capital letters like e.g. Posy necessitate proofs in the concrete calcule NU of 

decimal fagation numbers for their evaluation. 

 

For a series of alI unary-scheme strings I take the series of trigintiquintal numbers in normal ascending 

order. The trigintiquintal numbers that are not unary-scheme strings appear in the series as well and are 

defined to be equivalent to the nullification unary-scheme string {0} , this is of course the vast 

majority. The procedure is similar to defining primitive-fagon-number strings of concrete calule NU , 

there just are different rules not for number strings but the entities of the concrete calcule NU, the 

trigintiquintal strings. And I remind you that the number strings of calcule NU are also strings of the 

metalanguage.  

 

I can talk about the metaentities of the metalanguage in the metametalanguage. As I do it informally in 

this paper I use plain English (supralanguage), i.e. the common language instead of a genuine and 

separate meta-metalanguage. 

 

I have a series of all unary-scheme strings, of course with a tremendous amount of trivial ones. When 

calculating the value of a unary-scheme string it is either 0 if it is trivial, or it is calculated for the  

input number by replacing all appearances of the number-variable string 1 by this number and then 

the machinery of the concrete calcule NU is started for the actual calculation. 

 

Now I can convert every unary-scheme string coded by a trigintiquintal number  into a decimal 

number by a conversion metafunction TRIGINTIQUINTAL-TO-DECIMAL() . The result is a number 

string. 

 

There is the inverse metafunction DECIMAL-TO-TRIGINTIQUINTAL() that converts decimal numbers  

to trigintiquintal numbers for number input, otherwise the result is put to zero. The result is a string. 

 

I introduce the metafunction INSERT-UNARY-SCHEME() that puts the second string into the first 

string at all places instead of all appearances of the string 1 if the first string is a unary-scheme string 

and the second string is a number string; otherwise the result is put to zero . The result is a term string. 
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I introduce the metafunction SUCCESSOR() that calculates its successor of the string, a 

trigintiquintal number. The result is a string, the next trigintiquintal number (succession is in 

metacalcule NU ). It is immediately clear that all auxiliary metafunctions that are used in constructing 

it are total and primitive recursive with respect to the metacalcule NU . 
 

I finally introduce the metafunction EVALUATE() that calculates the value of a a term string, if the 

input is a term string, otherwise the result is put to zero . Therefore the result is always a number 

string. The calculation is done according to the rules of the concrete calcule NU of decimal fagation 

natural numbers. This metafunction is not a primitive recursive with respect to the metacalcule NU but 

is precisely defined like follows (watch out for the different fonts of  and  ): 
 

12  

  term1number2  EVALUATE(1) 2 TRUTH1 2 

  term1number2 EVALUATE(1) nullum
 

Nobody can keep me away from evaluating the series of all unary-scheme strings for their own value, 

that has been converted into a decimal number string and take its successor. You see: classical 

diagonalisation  producing a unary metascheme CHARGE(1) 
 

1CHARGE(1) SUCCESSOR(DECIMAL-TO-TRIGINTIQUINTAL( 

EVALUATE(INSERT-UNARY-SCHEME(1TRIGINTIQUINTAL-TO-DECIMAL(1) ) ) ) ) 
 

From this unary metascheme I construct an extravagant*) function that I call the Spark-function*). The 

Spark-function is defined for all decimal numbers, the result is always a decimal number. It is obtained 

by translating the argument decimal number into a trigintiquintal number. Then the metafunction 

CHARGE()*) is calculated for this trigintiquintal number, the result is translated back into a decimal 

number (decimal is necessary for comparison in figure 4). The Spark-function is not in the metacalcule 

NU , but is only describable in the third tier, the supralanguage. But you can also use the expression 

"calculable" only in the third tier, the supralanguage.  
 

The metafunction CHARGE() is not contained in the unary-scheme string series due to classical 

diagonalisation: therefore it is not an fagative function and the derived Spark-function is not an 

fagative function either. The important point is that it is calculable! It is sort of a new "Ackermann" 

function. How is the Spark-function to be placed. in figure 4 ? There are three possibilities: 
 

1  recursive (and thus arithmetically representable)  in area E 

2  arithmetically representable, but not recursive  in area F 

3  not arithmetically representable and not recursive  in area G 
 

With possibilty 1 Church's calculability thesis could survive. With possibilty 2 Gödel's calculability 

thesis could survive. But for me there seems to be little chance that the Spark-function is arithmetically 

representable. As long as nobody shows that the Spark-function is arithmetically representable 

possibilty 3 cannot be ruled out with the consequence that the "Diagonal lemma" and Gödel's first 

incompleteness thesis are in limbo. 
 

Remark: If somebody could show that the Spark-function is arithmetically representable, there still 

remain doubts as to Gödel's first incompleteness thesis. There may be many concrete arithmetical 

calcules, metacalcules thereof and even calcules of higher tier that embrace recursive functions and 

have more functions. Maybe these calcules cannot be combined into a single one. One could even think 

of an infinite ladder of metacalcules, where you take one function out of every ladder-step. Or other 

wild things in metacalcule NU  like 0   1)1   2)2)2   3)3)3)3   and so on. Who knows about the 

fantasy of mathematicians and metamathematicians. There is not necessarily a "mother of all 

calculators". And somebody could come up with another proposal for another weird function that has 

yet to be shown to be arithmetically representable. 
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8. Conclusion 

8.1 Challenging the defenders of Church's calculability thesis 

If someone has formulated a thesis (or a conjecture) that all elements have a certain property, and 

someone puts forward a special precisely defined element it is the responsibilty of the defender of that 

thesis (or that conjecture) to show that this special element has this certain property. As long as it is not 

shown that thesis (or that conjecture) is in limbo. Such is the logic of a thesis (or a conjecture). 

 

Church's calculability thesis states that all calculable functions are recursive functions. I have put 

forward fagative functions. Fagative functions are calculable. As they are given by the scheme strings 

of concrete calcule NU of decimal fagation natural numbers they can be effectively denumerated in its 

metacalcule NU. Therefore it is up to the defenders of Church's calculability thesis to show that all 

fagative functions are recursive.  

 

Challenge 1.1: the defenders of Church's calculability thesis have to show that areas C and D of figure 

4 are empty, meaning that there are no fagative functions that are not recursive. All exotic fagative 

functions have to be shown to be recursive, meaning that they all belong to  area B. 

 

The challenge is formulated in a precise manner. As long as it is not answered in a correspondingly 

precise manner Church's calculability thesis is in limbo. The method of Cutland [6] p. 85-99 for 

universal functions may be a good starting point to meet this challenge. 

 

Challenge 1.2: the defenders of Church's calculability thesis have to show that the Spark-function is 

recursive, meaning that possibilty 1 of figure 4 applies. No problems would then arise for Gödel's first 

incompleteness thesis. 

 

8.2 Challenging  the defenders of Gödel's calculability thesis 

Gödels's calculability thesis is weaker than Church's. So there is less to show: 

 

Challenge 2.1:  the defenders of Gödels's calculability thesis have to show that area D of figure 4 is 

empty, i.e. that all exotic functions are arithmetically representable 

 

Challenge 2.2:  the defenders of Gödels's calculability thesis have to show that possibilities 1 or 2 of 

figure 4 apply, i.e. that the Spark-function is arithmetically representable.  

 

No problems would then arise for Gödel's first incompleteness thesis. 

 

I do not advise to put to much work right now into meeting challenge 2.2. The results of section 7.5 

has given me the courage for a forthcoming publication: I will present an abstract calcule of natural 

numbers, that seems to have a categorical set of axioms (see section 2.4), which would contradict 

some theorems of  Skolem [3] and Gödel's first incompleteness thesis; the latter implies that there is no 

axiomatic system that completely describes natural numbers. Skolem stands for the large majority of 

mathematicians that adhere to a certain Platonism without which a lot of mathematics would not be 

possible but that has to be questioned when it comes to the matter of "effective" calculations. A critical 

analysis of Skolem's theorems is necessary. 

 

8.3 Counterchallenge welcome 

Finally I put forward the conjecture that area E of figure 4 is empty meaning that there are no 

recursive functions that cannot be expressed as fagative functions. If on looks at unary functions only: 

is there a unary-scheme string for every unary non-primitive recursive function (i.e. one with at least 



18.05.2019                                    Church's thesis is questioned by new calculation paradigm                                   31 of 32 

one minimisation)? I do think so but I cannot prove it. But in the sense of the introductory remark of 

the preceding section I accept as 

 

Counterchallenge: if I am presented with a  non-primitive recursive function, I have to show that I can 

write down the appropriate scheme string of the concrete calcule NU of decimal fagation natural 

numbers that gives rise to this function. As it all comes down for the challenger to show that 

minimisation functions are "regular" I am quite confident, because that proof has to be presented to the 

defender. And I think that one can obtain the recipe for the scheme from an analysis of that proof. 

 

8.4 Résumé 

Why did the Princeton group invent minimisation for the inclusion of Ackermann functions, why 

didn't they go a way like the one that has been sketched in this publication? I think it is so much easier 

today: now there are real computers, program languages, program codes and program generators. 

Since some years there is the idea of hypercomputation [8b], however, it tries to tackle the problem 

straight on and has not yet been overall successfull. I have chosen a bypath. 

 

Suppose that the challenges 2.1 and 2.2 are met and the Spark-function turns out to be arithmetically 

representable, then Gödel's first incompleteness thesis would survive, but there still would be the 

challenges 1.1 and 1.2. If these were also met Church's calculability thesis would survive. But in any 

case, besides a new way to look at computers and calculators the following would remain of my 

reasoning: 

 

For a logical analysis of a sentence one should always ask to what tier of languages it belongs and try 

to write it down in the appropriate language. And one never should call a thesis or a conjecture a 

theorem. 
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