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Summary 

 

Geometries of O adhere to Ockham's principle of simplest possible ontology: the only individuals are 

points, there are no straight lines, circles, angles etc. , just as it was was laid down by Tarski in the 

1920s, when he put forward a set of axioms that only contain two relations, quaternary congruence and 

ternary betweenness. However, relations are not as intuitive as functions when constructions are 

concerned. Therefore the planar geometries of O contain only functions and no relations to start with. 

Essentially three quaternary functions occur: appension for line-joining of two pairs of points, 

linisection representing intersection of straight lines and circulation corresponding to intersection of 

circles. Functions are strictly defined by composition of given ones only. 
 

Both, Euclid and Lobachevsky planar geometries are developed using a precise notation for object-

language  and metalanguage, that allows for a very broad area of mathematical systems up to theory of 

types. Some astonishing results are obtained, among them:   

 

(A)  Based on a special triangle construction Euclid planar geometry can start with a less powerful 

ontological basis than Lobachevsky geometry.  

 

(B)  Usual Lobachevsky planar geometry is not complete, there are nonstandard planar Lobachevsky 

geometries. One needs a further axiom, the 'smallest' system is produced by the proto-octomidial- 

axiom. 
 

(C)  Real numbers can be  abandoned in connection with planar geometry. A very promising conjecture 

is put forward stating that the Euclidean Klein-model of Lobachevsky planar geometry does not contain 

all points of the constructive Euclidean unit-circle. 
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1.  Introduction 

1.1  Ontological bases of planar geometry  
 

Geometry is not as finished as one usually assumes, it pays to have a new look at an old theory.  
 

Since about 2400 years planar1) geometry  of Euclid's Elements (ref. 1) is the archetype of an axiomatic 

system. Although it enjoyed some face-lifting since the early 19th century most treatises including 

Hilbert's Grundlagen der Geometrie (ref. 3) essentially talk about the same entities as Euclid: points, 

lines, circles etc. . More than 11 entities are used explicitly or implicitly in planar geometry: 
 

4 standard geometry sorts: points, infinite straight lines, rays and circles 

2 more finite sorts: straight line segments (different from a pair of points), circle segments 

3 additional sorts: angles, natural numbers (for Archimedes), real numbers (for measuring) 

2 figures: triangles, quadrangles (plus polygons) .  
 

Things get even more complicated when direction comes into play. Archimedes axiom is introduced 

along with natural numbers, trigonometric real functions appear by magic, the problem of transcendent 

numbers is widely ignored. This is true for more recent publications as well (ref. 4 , 5 , 7 , 8 , 12 ) , 

sometime they are a little bit critical about definitions and postulates, but they do not away with the 

whole zoo of entities. The weirdest of all of these are angles, not even Hilbert does them justice as 

equivalence classes of triangles with respect to one corner. Pasch is the first to eliminate lines, criticizing 

their infinity, claiming that segments are enough. 
 

Only in the 1920s the Polish logician Tarski (ref. 9) did the decisive step to reduce the entities that have 

to be put into the axioms (shortly listed in section 1.4) to start with: all you need is points. And only two 

relations, quaternary congruity2)  and ternary betweenity2)  are included in  his ontological basis, as one 

calls the basic ingredients of a mathematical theory. From a philosophical point of view this is very 

satisfying and one has a name for that principle: Ockham' razor. In the end period of scholastics of the 

15th century Ockham formulated that principle - of course in Latin: "entia non sunt multiplicanda sine 

necessitate" (a plurality of entities must not be posited without necessity). It  can be taken as the begin 

of nominalism ( Bravo, Ockham 3 points ! ) . 
 

Geometries that adhere to Ockham's principle can be called by the catchy name: geometries of O . 
 

Tarski's planar geometry certainly is a geometry of O. Are there other planar geometries of O ? Contrary 

to the general opinion: it seems that planar geometry is not at its end, there are new insights. Tarski has 

used two basic relations . Can one use basic functions instead of them as well? Functions have the 

advantage to be closer to our intuitive notion that geometry is about constructing figures. Tarski treats 

R-geometry, based on relations. In this publication F-geometries are put forward that are based on 

functions. The constructive approach somewhat tries to put into precise language what the Germans 

mean by untranslatable 'Anschaulichkeit' . 
 

R-geometry short for Ockham-relation-geometry.  

F-geometry short for Ockham-function-geometry. 
 

Now one has to specify the essential ingredients of planar F-geometry, i.e. its functions. It uses 

essentially three quaternary functions (as opposed to R-geometry with its two relations): appension3)  

for line-joining of two pairs of points, linisection representing intersection of straight lines and 

circulation corresponding to intersection of circles 

 
1) Planar is not the same as two-dimensional geometry; two-dimensional elliptic or S-geometry is not planar.  
2) Names of relations are chosen to end on 'ity' ;'congruity' instead of 'congruence', 'betweenity' instead of 'betweenness' 
3)  Names of functions are chosen to end on 'ion'   
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From these basic-functions all other functions and all relations of F-geometry are obtained. They are 

strictly defined by composition of given ones only. So-called definition by cases is not necessary except 

for special treatment of one single point of a function, to which end a purely logically defined quaternary 

function decision is included too. Composition of functions means successive geometric constructions. 

Constructions like the ones in Perron (ref. 7) lend themselves easily into a translation of the function-

language of F-geometry. 
 

In the following three chapters so-called absolute (or neutral) geometry, Euclidean geometry and non-

Euclidean (Lobachevskyan) geometry will be developed, i.e. N-geometry, E-geometry and L-geometry 

with corresponding calcules. 'Calcule' is the name of a mathematical system with the precise language-

metalanguage method Funcish-Mencish , as described in sections 1.3 and 1.4 . 'Calcule' is an expression 

coined by the author in order to avoid confusion. The word 'calculus' is conventionally used for real 

number mathematics and various logical systems. As a German translation 'Kalkul' is proposed for 

'calcule' versus conventional 'Kalkül' that usually corresponds to 'calculus'. Calcules are given names 

using some convention that relates to  the Greek sort names of a calcule, e.g. calcule pi with sort . 
 

In mathematics a measure assigns a real number to a subset of elements. A very special measure appears 

in geometry where one assigns a number to a pair of points, this is done by a metric function (also called 

distance-function) . Such a metric function has certain properties, a calcule with a metric functions is 

called metric. As there is a much more general measure theory in mathematics it will rather be talked 

about metering as far as geometry is concerned. 
 

In the following there will appear no sets or subsets. Metering appears only for distances between two 

points, angles at a point with respect to two other points and for areas of triangles given by three points. 

For clearity these three kinds of measuring will be called metering. Metric functions for distance-

metering map two points to a number, angle-metering and triangle-area-metering functions map three 

points to a number. These numbers belong to a meter calcule which is not necessarily the calcule of real 

numbers. A meter calcule contains a binary meter function for combinations of entities, e.g. the metric 

calcule of planar Cartesian geometry has 'addition' as its meter combination function. 
 

An abstract calcule is based on axioms as opposed to a concrete calcule whose foundation can be put 

into practice by a machine. The abstract calcules of planar geometry of O  will be given by a top-down-

axiom systematic. Euclid E-geometry and Lobachevsky L-geometry will also be provided with a 

metalingual Axiom mater (usually called 'scheme') that allows for denumerably many Axiom strings. 

 

 

 

1.2  Object-language and metalanguage 
 

One has to specify the logical language that is needed for F-geometries. In order to describe an object-

language one also needs a metalanguage. According to the author's principle metalanguage has to be 

absolutely precise as well, normal English will not do. There are at least three levels of language as 

introduced in reference (10) where a short sketch of the method is given in chapters 2. and 3. : 
 

English supralanguage  natural 

Mencish metalanguage  formalized precise 

Funcish object-language formalized precise. 
 

The essential parts of a language are its sentences. A sentence is a string of characters of a given 

alphabet that fulfills certain rules. This means that metalanguage talks about the strings of the object-

language. The essential parts of the metalanguage are the metasentences  (that are strings of characters 

as well). In supralanguage one talks about the metasentences, just as metalanguage talks about object-

language. Here it is not discussed in general what an object-language talks about.  
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On first sight Funcish and Mencish look familiar to what one knows from so-called predicate-logic (for 

geometry first-order logic FOL is sufficient). However, they are especially adapted to a degree of 

precision so that they can be used universally for all kind of mathematics. And they lend themselves 

immediately to a treatment by computers, as they have perfect syntax and semantics. It is not the place 

to go into details. Both Funcish and Mencish have essentially the same syntax. Mencish, however, has 

strictly first-order logic, although it can talk about higher-order logic. Notice that Funcish has a context-

independent notation, which implies that one can determine the category of every object uniquely from 

its syntax. 
 

planar geometry of O sponsor calcule sort comment                        abstract semiconcrete
1)

 complete 

        

R-geometry 
base relations 

 Tarski 
and more 

pitau  Euclidean a Y 

        

F-geometry  
base functions 

N-geometry Saccheri pi  circulition a N 

 E-geometry Euclid  piepsilon  isoscition a Y 

  Wantzel piomega  with bi-Robinson arithmetic a Y 

  Descartes PIdelta  full plane, straight lines s Y 
        

 L-geometry the author pichi  isoscition a ? 

  Bolyai pibeta  circulition, no proto-length a N 

  Lobachevsky pilambda  circulition, octomidial a Y 

  Nikolai-7 pinualpha  ditto, septimidial a Y 

  Nikolai-11 pinubeta  ditto, unidecimidial a Y 

  Klein PIkappa  circular disk, straight lines s Y 
        

 

The calcules of planar geometry of O 

 

 number calcule sort comment 
      

discrete arithmetic natural number alpha  Robinson abstract

  ALPHA  Robinson concrete 

  ALPHABETA  bi-Robinson concrete 

  ALPHAEPSILON  power-Robinson concrete 
      

  LAMBDA  recursive functions concrete 
      

 integral number rhoiota   abstract 

  RHOIOTA   concrete 
      

rational arithmetic rational number rho    abstract 

  RHO  e.g. 2/3  uniconcrete2) 

 ratio number RHORHO  e.g. 24/9 multiconcrete2) 
      

algebraic arithmetic biradical number deltaalpha  + - . / square root 3) abstract 

  DELTAalpha  ditto semiconcrete1) 

 klein-number DELTAkappa  see section 4.8 semiconcrete 
      

 algebraic nr. etaalpha   abstract 

SOL calculus real number zeta   abstract 
      

1) semiconcrete is a concrete calcule with strings as individuals, that, however, are not decidable  (see section 3.8) 
2)  unique, multiple representation of individuals  3)  generated from 1 by normal arithmetic functions and square root 

 

Essential survey on the world of number calcules 

 

 

In supralanguage English one can also metatalk informally about object-language. Precise metalanguage 

will only be used in this publication when it seems necessary. E.g. sometimes the English word 'axiom' 

will be used for practical reasons and sometimes the precise word Axiom of Mencish.  
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1.3  Logical languages and syntax, terminology 
 

In the following the object-language Funcish and to an even more limited extend the metalanguage 

Mencish will be sketched. The perfection is based on a strict use of an alphabet of 256 characters and 

the font-principle that allows to distinguish between object-language (Arial and Symbol, normal), 

metalanguage (Arial and Symbol, boldface italics) and supralanguage English (Times New Roman), 

that is used in italics for comments or heuristically for shortness or easier understanding of conventional 

mathematical expressions like sr(2sr(2)-2) that are put into italics. The following syntax1) of Funcish is 

used for functions and relations , as shown by examples in a condensed form. Metaproperties  should be 

read in full as indicated in the examples of the next four lines. 
 

sort         e.g. sort

variable  1 2     variable1 

referable  1 2     referable1 

individual-constant e f     individual-constante
 

function-constant i.e. name of function, that allows for determination of arity as well, using  

                                      and                e.g. 
 

unconditioned      e.g. decision (quaternary function)

conditioned 2) 121234 appension (quaternary function)

   the condo character  precedes the condition abbreviated  
 

pattern 3)  variable and individual-constant as such or put into a function-constant e.g. 

   1213 

   ef11234   and compositions thereof
 

relation-constant i.e. name of relation, that allows for determination of arity as well, using   

                           and      and      e.g.  
 

        e.g. congruity (quaternary relation)

        internity (ternary relation) 
 

equitive-phrase pattern1pattern2 or pattern1pattern2

   ef124 
 

relitive-phrase  variable and individual-constant put into a relation-constant e.g. 

   1265     a quaternary formula

   e12     a binary formula 
 

sentence  is formed from equitive- and relitive-phrase strings using quantive logic 

   with logical character  symbols             

   in a way that all variable strings are bound by a quantor . 
 

Some examples must suffice for metalanguage Mencish that talks about the character strings of Funcish 

referred to by a metavariable e.g. 1 with essentially the same syntax but notice the boldface italics: 
 

1 phrase1 formula1 sentence1
 

1 sentence1 TRUTH1  FALSEHOOD1
 

Using a general string-replacement metafunction that replaces all proper appearances of the 

second argument in the first argument by the third one: 
 

11THEOREM111THEOREM1 
 

1)  that is called Bavarian notation  
2) conditioned functions are usually called partial, unconditioned functions are called 

total ; notice that most of geometric functions are conditioned, e.g. two circles may or may not intersect, whence the function 

'circle-circle-intersection' is conditioned. 3) most of the metaproperties have to be defined recursively   
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In supralanguage English and metalanguage Mencish new expressions enter and some conventional 

expressions are given a more precise and sometimes even a somewhat deviant meaning. The essential 

general ones are listed in the following table. Newly coined special supralingual expressions for 

geometry appear in appendix B , as e.g. linic, protive, contrive, isoscity, circulity, riscolation etc. . 
 

expression description comment 
   

English   

calcule mathematical system with the rules of Funcish German Kalkul 

concrete fit for machine-representation  

uniconcrete unique individuals as strings of characters  

multiconcrete multiple representation of the same individual  

semiconcrete individuals are undecidable strings of characters  

abstract beyond machine-representation  

metacalcule metasystem talking in Mencish about its calcule German Metakalkul 

ontological basis what a calcule needs to start with (basic ingredients)  

junctive logic  for 'propositional logic'  

quantive logic here for 'predicate first-order-logic with equality' higher order too 

mater for 'schema', giving an infinite set of sentence strings deviant 

conditioned partial function as opposed to total function deviant 

meter for distances, areas and angles; rather than 'measure' new 

proto- relating to basic pair of points, restricted to proto-line  

cali- entity calibrated with reference to proto-pair  new 

radical number obtained from 1 by + - . / and roots new 

biradical number obtained from 1 by + - . / and square root new 

corpus rather than 'field' (algebraic), German 'Körper' deviant  
   

Mencish  example , 
sort as in theory of types  , ,,, 
individual of a calcule (e.g. number, point) 123 
number sort of individual in arithmetics calcule A 
point sort of individual in geometry calcule  
individual-constant name of an individual e 
variable sort with post-index, used in scheme and phrase 1 
referable sort with pre-index, used in conditions only new  1 
entitor, omnitor characters for quantive logic, quantor new   
condo character preceding condition of partial function … new   
functum function or relation , plural in English use functa  
function-constant name of a function (notice that the sorts are included)  
relation-constant name of a relation (notice that the sorts are included)  
basis- ingredient of ontological basis new 
extra- defined with the entities of the ontological basis new 
pattern scheme or term new 
scheme contains variable deviant1u  
term contains no variable deviantuu 
equitive-phrase very simple with one equality symbol  = new 1e 
relitive-phrase very simple with one relation new 123 
phrase formula  or sentence new 
formula contains free variable 12e3 
sentence in the sense of mathematical logic, contains no free variable 11n1 

TRUTH , FALSEHOOD true sentence , false sentence  
limbHOOD sentence that is neither true nor false  new 
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1.4  Planar Euclid R-geometry of Tarski 
 

Taken from reference (8) the axioms and the so-called axiom-scheme are put into Funcish/Mencish for 

abstract calcule pitau of planar Euclid R-geometry with relations only in its ontological basis 1). 
 

sort       Tarski-point 
 

basis-relation-constant   

pair-congruity     notice that betweenity allows for equality of points as 

betweenity     opposed to internity of F-geometry.   
 

axioms of  planar Euclid R-geometry 
 

 pair-congruity  

A1 reflexitivity  121221 

A2 identity  123123312 

A3 transitivity  123456

    123434561256 

 betweenity  

A4 reflexitivity  1212112 

A5 Pasch   12345143253

    6462561
 

A6 lower dimension 123123231

         312 

 congruity and betweenity  

A7 upper dimension 12345[[1415

    2425343545

    123231312 
 

A8 Euclid variant A 123456[[[126

    12261451445 

    [24324342316
 

 Euclid: variant C  12345145243

    1467

    126137657 
 

A9 five segments  12345678

    12123567

    125623671458

    24683478 
 

A10 segment unique 2) 123453454512 

 existence  6346461256
 

axiom mater of continuity (for so-called axiom scheme) 
 

121 3 2 3 sentence11

sentence22 Truth31212312

31212 132
 

1)  However, I am not sure that this basis and these axioms are sufficient to cover all of planar Euclidean geometry. How 

about the unique existence of the top of a triangle with given base and the length of two sides? How about the two orientation 

of triangles? I have not gone into calcule pitau any deeper - it does not lend itself easily to constructions. How about 

Archimedes? 2)  Uniqueness is missing at Tarski   
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1.5  Straightedge and roundedge construction 
 

Plausibility is enhanced by heuristic sketches. It is often said that planar geometry is based one compass 

and ruler. Let's be a little more precise. 
 

A divider is a compass with two needles, rather than one needle and a drawing-lead. No lines have to  

drawn on paper as tracks of lead in the heuristic approach, as there are no straight or circular lines in F-

geometry, but only points, and a divider can punch holes - that is sufficient. A ruler is not a measuring 

rod, just a straight rod. A straightedge is an idealized ruler of infinite length (with a definite start), a 

roundedge is an idealized divider with arbitrary length of its legs. 
 

A decisor is an instrument with four needles that is applied to four points. In case that the first two points 

are equal it selects the third point, otherwise it selects the fourth point. 
 

Let's be precise: one needs two straightedges, a needle (for straightedge-intersection), two roundedges 

(for circulation) and a decisor for F-geometry. Construction of isoscelic triangles (isoscelition) can be 

done by the two roundedges that are used with equal spacing, but one can also construct a special 

isoscelator, that allows for marking the tip of an isoscelic triangle with a given base and given legs (at 

least half of the base).This will be useful in chapter 3 ; of course it is an idealized isoscelator for arbitrary 

lengths. 
 

In section 4.8  it will be useful to have two ellipsedges, i.e.an idealized ellipsograph with two needles 

and axes of arbitrary length. 
 

With these tools one can simulate the functions of F-geometry in the real physical world: applying of 

functions means drawing and vice versa, from a drawing recipe one gets a function. 

 

 

 

1.6  Results 
 

This publication is not a usual mathematics textbook or a handbook. Very few proofs will be given in 

this publication, as most of the theorems of planar geometries are well established. After all, the aim of 

this publication is categorical clearity. As far a proofs are concerned there are some proof ideas given. 

Actually, most of the usual proofs - some of them with an age of more than 2.000 years - can be simply 

transferred into the language of this publication, and there is no need to do this in most cases, and it is 

boring, too. Furthermore proofs get very lengthy when one uses a perfect logical language. This 

publication is about the basis of geometry, it is about ontology, it is about levels of languages, it shows 

the differences between various systems of planar geometry, it points out the problems and shortcomings 

of the conventional treatises and it gives the proper solution thereto. And it leads to some partially 

astonishing results. 

 

In the following three chapters calcules (of planar geometries) for neutral N-geometry, Euclidean E-

geometry and Lobachevskyan L-geometry will be developed. N-geometry is sort of mother of all 

geometries of O. It is well-known that N-geometry is not complete, as one can add the parallelity axiom 

for Euclid E-geometry or its negation for  Lobachevsky L-geometry. After all, that's where the interesting 

story of planar geometry started in the early 19th century.  
 

The usual features of unique and multiple parallels are encountered, as well as the difference in metering 

areas (either 'base times height' or angle defect), the common impossibility of dividing of angles except 

successive bisection, the impossibility of higher dividings of segments but the bisection in L-geometry, 

a different kind of 'Pythagoras' and so on.  
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Twelve important observations show common features and differences of planar F-geometries:  

 

(1)  The concept of angles can already be developed in N-geometry although angles are not entities of 

F-geometry calcules. But still one can talk about equality and minority of angles, right angles, acute 

angles, combining of angles and so on.  There is a way to talk about metering of angles without the 

reference to a calcule of numbers. No numbers (whatsoever) are included in the language of the calcule 

pi of N-geometry. They do not belong to the ontological basis of the calcule. 
 

(2)  In E-geometry and L-geometry there is a way to meter segments (given by pairs of points), angles 

(given by a triangle with a marked tip) and areas of triangles (given by three points). There is a way to 

talk about metering without reference to a calcule of numbers. No numbers (whatsoever) have to be 

included in the language of the calcules of E- and L-geometry. They are not necessary in  the ontological 

basis of the calcules. Actually it is the other way round: numbers can be produced by E-geometry in a 

certain sense. 
 

(3)  In E-geometry and L-geometry junctive logic is sufficient for conditions of partial functions. 

 

(4)  In E-geometry and L-geometry Axiom maters of inductivity take care that all models are 

isomorphic (a model of a calcule is either another calcule or a subcalcule of a calcule - see section 4.6). 

 

(5)  Based on a special triangle construction E-geometry can start with a less powerful ontological basis 

than L-geometry. Isoscition, i.e. the construction of isoscelic triangles replaces circulition in the 

ontological basis. Circulition in E-geometry can be constructed with the use of isoscition. For the 

heuristic sketches one does not need two roundedges, but only one isoscelator (of section 1.4). 
 

(6)  If one extends the calcules E-geometry by numbers for conventional metering no real numbers are 

necessary. So-called biradical numbers are sufficient, i.e. numbers that are generated from 1 (one) by 

arithmetical functions addition, negativation, multiplication, reciprocation and biradication (square 

root). No kind of limit feature has to be included in E-geometry and L-geometry.  
 

(7)  There is a fundamental difference in the choice of proto-pair oe in E-geometry and L-geometry. 

In E-geometry it has no properties; actually one cannot even attribute properties to pairs of points in E-

geometry without reference to the proto-pair. The situation in L-geometry is totally different. In 

connection with angles one can define properties of pairs; this fact is mirrored in an additional axiom 

A26 that is needed in L-geometry. The standard choice is the so-called Proto-octomidial-axiom . 
 

(8)  There are many non-standard L-geometries depending on the choice for A26 e.g. one can choose the 

Proto-septimidial-axiom . Without such an axiom L-geometry is incomplete.  
 

(9) The Euclidean Klein-model of Lobachevsky planar geometry necessitates some kind of recursion 

(for the introduction of the property of points to be 'part of klein-circle' ). 
 

(10)  The Euclidean Klein-model of Lobachevsky planar geometry supposedly does not contain the full 

unit-circle. The simplest form of a very plausible conjecture says: there is no point with the coordinates 

(1/2 , 0 ) . Biradical numbers supposedly contain a closed  

genuine subset of  newly defined klein-numbers between -1 and 1  
 

(11)  E-geometry can be extended for a full treatment of Archimedes axiom and for polygons . This 

inclusion of natural numbers is done conform to the used system. Whereas E-geometry has regular 

polygons with a count of corners that is a product of Fermat-primes and powers of 2 standard L-geometry 

has only trivial regular polygons with a count of powers of 2 starting with the octagon . 
 

(12)  The undecidability of planar geometries is straightforward, it is essentially the same as the 

undecidability for biradical numbers (whether a construction leads to a positive number or not).  



version 1.0 Geometries of O 11 

2. Planar N-geometry 

2.1  Ontological basis of calcule pi of planar N-geometry 
 

Absolute geometry was given its name by Bolyai. However, 'absolute' seems a bad choice as it is 

leaves ways open for completion. Greenberg proposed to rather call it neutral. As Saccheri thought that 

it suffices for E-geometry, his name is given to the abstract calcule pi of Saccheri planar N-geometry. 

There are three basic geometrical functions, all of them are partial, i.e. they carry a condition and can 

only applied when they are preceded by a clause that guarantees, that the condition is fulfilled. E.g. one 

can append a pair of points by another pair only if the two points are different, (heuristically speaking: 

otherwise one would not know in which direction the new segment is to be added). Properly written: in 

121234... 1234 12... or in 

121234... 1234 12... it is shortened to:  ... 1234... 
 

Furthermore there is the trivial basic logical projection function decision  marked by log-

arrow . It is a total quaternary function, applicable in every calcule. Values are the third and fourth 

argument, depending on equality and inequality of the first two arguments. 
 

12123431212344
 

The ontological basis of abstract calcule pi comprises the following ingredients . There are only points, 

no line segments, no lines, no rays, no circle segments and no circles! No basis-relation-constant strings 

appear. For the Archimedes feature the function entiration is included. The first function appension 

corresponds directly to Tarski's Axiom A10 ' segment unique existence' . New names are chosen for the 

functions and relations, so that they cannot be confused with similar conventional ones.  

 

sort         point 
 

basis-individual-constant proto-origin o     proto-end  e no special properties 
 

basis-function-constant condition     conventional description 
 

appension 1)   1234   segment-segment-attachment 

circulition   1234  circle-circle-intersection 

isoscition   123   isosceles construction 

linisection   1234    line-line-intersection 
 

entiration   1213  maximum of multiples of a pair 
 

extra-relation-constant strings appearing in conditions:  
 

appensity 2)   121234 

circulity       distances form triangle or linic3) triple 

isoscity       greater half base 

linisectivity        
 

Circulity is necessary for - conventionally speaking - two circles to intersect. Isoscition and isoscity for 

intersection of circles of same radius has been added to the ontological basis in order to make things 

easier when E-geometry is introduced, as many extra-relation-constant strings can already be defined 

using isoscition.  
 

Linisectivity is necessary for intersection of lines, as one allows for cases where - conventionally 

speaking - two lines do not intersect (they are called parallels). 
 

 

1) by convention supralingual names of functions are chosen to end on 'ion'  2) names of relations are chosen to end on 'ity'  
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Observe that there are two kind of line intersections, that are called transsectivity and cissectivity. In the 

first case of transsectivity intersection is straightforward whereas in the second case of cissectivity the 

intersection has to be checked in some fashion. It will turn out that cissectivity is different in E-geometry 

and L-geometry, whereas transsectivity coincides. Transsectivity is described with junctive logic, 

whereas cissectivity is nonjunctive in N-geometry although junctive both in E-geometry and L-

geometry. Definitions are developed further down. They get much clearer when the concept of distance 

has been introduced in section 2.3 . For writing down the Axiom strings a few  extra-functum-constant  

strings come handy, that are defined below on the base of  basis-function-constant strings only: 


extra-relation-constant strings: 

pair-congruity  

pair-minority   

pair-conminority   

internity       no equalities allowed

linicity        at most one equality allowed on line 

line-equality       two genuine pairs on same kind 

tri-angularity        different points, not linic 1)

tria-isoscity        genuine isosceles-triangular condition 

lina-isoscity        linic isosceles-triangular condition 

tria-circulity       three distances form circular triple  

lina-circulity       three distances form linic triple 

protivity        protive triangle

lini-protivity       protive triangle or linic

regular-transsectivity       guaranteed intersection of two lines 

fringe2)-transsectivity       fringe case thereof 



Definition of extra-relation-constant strings: 


pair-congruity         123412341212121234 


pair-minority  12341212121234

   12341121212121234


pair-conminority 1234]121234

  1212341121212121234


internity  123122312233


linicity   123122323313112 

   123231312


line-equality   1234123412233

   21133131313322

   122442114414

   1414422


tri-angularity  123122331123

tria-isoscity   1231212113 

lina-isoscity  1231212113





1)  'linic' means that points belong to a straight line, for good reasons the 'linear' is avoided, it usually has other meanings  

2) 'fringe' refers to cases at the edges of a condition, e.g. equality is the fringe part of equal-minority  
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isoscity   12312121131213 
 

tria-circulity   1234121324

smaller pro-contra-sum 1211211324

   1221211211324

smaller pro-sum 1211211321121131224

   1224

smaller contra-sum         2121222412122242113

   2113
 

lina-circulity  123412

   21121131212224

   21121131224

   21131212224


With these auxiliary extra-functum-constant strings the necessary extra-relation-constant strings that 

are necessary for the conditions in the basis-function-constant strings. 


circulity   1234

   12341234121314 
 

protivity  1231231121331


   this definition for a triangle with a definite orientation (that will be called 

    clockwise) is chosen as compared to the simpler with 31233

   in order to be best  prepared for E-geometry 



lini-protivity  123123123
 

regular-transsectivity  12341234    genuine pairs

   123214213124  opposite sense

   341432431342  of orientation 



fringe-transsectivity 1234121314

   12341231234341 


transsectivity   123412341234  regular or fringe- ,

   1234       but not line-equal



Notice that only this definition is junctive. It uses appension and isoscition (for sense of orientation by 

protivity) without entitor as opposed to the following nonjunctive definition. For the application of 

nonjunctive Syniom1) strings one has to remember that variable collisions have to be avoided at 

insertions.


cissectivity  1234

   5125512345534 


lini-sectivity   123412341234








1) Syniom strings are synonymous sentence strings  
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regular included fringe excluded 
 

appension  
  

 

 

 

 
 

 

   

   

circulition    

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

transsection   

 

 

 

 

 

 
 

non-linisectivity 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

cissection 

 

 

 

 

 

 

 

Conditions and principal arrangements for basic functions in the various possible cases   
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2.2  Axioms of planar N-geometry 
 

The following Axiom strings are listed in a top-down fashion so that the conditions can be expressed 

with the preceding functions.  

 

 appension 
 

A1 vanities   121112211212

 appension  312332
 

A2 symmetry appension 12341212341243
 

A3 independence  1234561234

 appension  11234562123456
 

A4 associativity  1234561234

 appension  12334561123456
 

A5 commutativity  12345612

 appension  11234561125634
 

A6 suspensivity  12341234

 appension  12342121
 

A7 directivity1) appension 12341212341
 

 

A8 triangularity appension 1231231211332
 

 circulition
 

A9 auto-circulition  111111
 

A10 congruities  12341234

 tria-circulition  11234132123424
 

A11 uniqueness  1234512341254

 tria-circulition  151312341254
 

A12 duplicity orientation 1234123412342143

 tria-circulition
 

A13 lina-circulition  12341234

    21121131212224

    12342112113

    2112113122412344

   2113121222412343
 

A14 isoscition 2)  1231231231213
 

 linisection
 

A15 linisection Pasch 1234123124423143

    5145253
 

A16 auto-section  111111

 linisection  231212312333 

 

 
1)  A7 excludes elliptic geometries  
2) A14 is just a definition. however, it is included trivially as an Axiom in order to simplify definitions of functions, that 

do not need circulition, but for which isoscition i.e. the construction of isosceles triangles is sufficient. This will become 

essential in chapter 3 for E-geometry where one can keep the same definitions  
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A17 incidence  123412341234

 linisection  121234341234 

 

A18 uniqueness  123412341234

 linisection  512534551234
 

A19 commutativity  123412341234

 linisection  12343412
 

A20 symmetry  1234123412

 linisection  12342134
1)

 

 Archimedes entiration and other
 

A22 entiration  123121312131231

 initiality   12131232
 

A23 entiration  1231213 

 commutativity  112133112313
 

A24 entiration  1231213

 maximality  112133112313
 

A25 non-triviality  oe
 

 

For so-called Archimedes-ordering there are two alternatives of ontological bases (see section 5.1). 

However, the above choice is preferred for the moment as it is simpler and better adapted to construction. 

There are three important comments: 

 

a) Notice that use is made of relations internity, linicity, linisectivity, tria-circulity, lina-circulity, pair-

congruity, pair-minority , pair-conminority and tri-angularity. However, it was done in a top-down way 

so that no self-references appear.  

 

b) In the calcules of geometry of O the introduction of functions through value definition is not 

admissible by our own self-imposed requirement: functions can only be defined by composition of given 

ones. By the use of the decision function some logic enters the definition of functions, e.g. for emination 

and emaxation (see section 2.3) .  
 

c) Another remark relates to the analysis of geometrical proofs. Sometimes it is said 'take any point on 

this line' but with strict logic it is not possible to pick any point without further qualification. One has to 

specify a point, and there rests no problem, as soon as a certain point is chosen, everything goes along 

smoothly. As an example: when constructing the parallel-angle at a given point Perron (p. 42) asks you 

to pick any point on a perpendicular. One rather has to take a specific point, e.g. the point that has the 

distance of the perpendicular pair. Only in this way one can fulfil the above composition-requirement. 
 

If the above Axiom strings contain an Axiom that is not independent of the others (meaning that it can be 

proven from the other ones as a THEOREM ) just drop it, no harm is done.  

 

 

 

 

 

 

 

 

 

 

 

 

1) number gap on purpose, this is where parallelity-related axiom A21 will fit in   
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2.3  Fundamental extrafuncta 
 

Definitions of some convenient extra-function-constant strings  condition   
 

pair-doublition  121212     none
 

dispension 123421134   121234

suspension 12342134    ditto

adipension 12341212134  ditto
 

Now for the first time use is made of logical function for determination of the smaller and 

greater distance: 

 

emination 123       none 

  3111321331323132121

  smaller or equal distance to last      if same distance 2 is taken 

  the internal conditions are not relevant due to preceding decision fringe cases are included  
 

emaxation 123123121    none 

  3111321331323132112

  123121  

  greater or equal distance to last     if same distance 1 is taken  

          fringe cases are included  
 

reflection  12 
 

123  611233211212213
 

412

5144

6143

76325 

872 

96813
 

it is also valid for fringe cases,  

3 on 2 5 or on 1 2 

 

By the way, reflection is a symmetry, i.e. 

a rigid motion of polygons.  

 

 

 

 

 

 

 

 

 

 

 

perpendiculation 12 

   12311123123 

 

One can express these function very easy with circulation; by two THEOREM strings (isoscition was 

introduced in the ontological basis in foresight to E-geometry). 
 

perpendiculation 1231212332133 

reflection  123 3123 

 

 

So far six extra-relation-constant  strings were introduced that were convenient for the conditions of 

the three basic-function-constant and the Axiom strings. Now a great number of more extra-relation-

constant  strings are defined. Notice that except for cissectivity and parallelity (both containing entitor) 

all definitions are mere junctive abbreviations.   

1,6 

3 5 

8 

4,6 

7 

9 

2 
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betweenity   123122312233

   132123
 

collinicity   123122331

   122332331131122
 

zero-angularity 1231231321223 

straight-angularity 123213 

line-angularity  123123123 

angularity  1231213     tri- or line-angularity 

  

contrivity  123123

lini-contrivity  213
 

linisectivity  123412341234  implicit entitor 
 

fringe-non-linisectivity  1234123413   no entitor 

   341343412123  

 

parallelity  123412341234  implicit entitor
 

regular-parallelity 123412341234 parallel, not line-equal  

non-linisectivity 123412341234  implicit entitor 
 

syn-parallelity  12341234123134

   123134     same direction of points 

 

anti-parallelity  12341234123134

   123134     opposite direction  
 

syn-line-equality 123412342341234

       or    232341234 

anti-line-equality 123412342431234

       or    242431234 
 

pro-parallelity  12341234123   protive side of 12 

contra-parallelity 12341234123   contrive side of 12 
 

equilaterality  1231212232331 

isoscelity  12312131213
 

right-angularity 1231232121323 

riso-angularity  123123123 
 

triangle-congruity 123456[[[[123456123564

 123645123546123654123465 
 

triangle-anchor-congr. 123456124523563164
 

triangle-anchor-sense- 123456123456

congruity  123456123456
 

triangle-sense-  123456123456

congruity  123456123456 
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circle-12- line-34-intersections 

Here one meets the problem to select one of the two possible solutions in the normal case which is easy 

as one can require the condition that the two solutions have the same direction as the pair of points that 

define the line. One meets other problems if the center of the the lies on the line or even worse if it 

coincides with one the two points that define the line. But with the tool of decision one can manage.  
 

syn-resection 341341112121314 

anti-resection 
 

 

triangular collinic and fringe excluded 

 

 

 

 

 

 

 

 

 

 

 

5341

63415 

76343 

87612

9168152 

1096 
 

 

 

 
 

 

12349393410934910 

123412346 

 

12341234 have same direction as 34 

   

rectification (triangle) 1231123 12 cathetus from 1 
 

Notice that the following definitions also only need isoscition, and not circulition: 
 

equi-triangulation  12122   via equilateral triangle 

pair-dichotomition  12121221 with character trip 

anti-perculation  122122  perculation at 1 via equilateral triangle 

syn-perculation  1211212 perculation at 2 via equilateral triangle 

anti-riscolation  1211212 right-isoscelation at 1 

syn-riscolation   1221212 right-isoscelation at 2 

opposition   123312  rotation by straight angle around center 

 

Existence of parallel can be proven. However, uniqueness is a different question that will be treated in 

Axiom strings A21e and A21l of E- and L-geometry resp. .  

 

THEOREM existence of parallel 12312341234 
 

The following function syn-ortho-parallelation 12 can be interpreted as some kind of 

translation (producing a rigid motion of polygons) in planar N-geometry: the segment 12 is moved 

along 13 so that 1 is put to 3 and 2 to 123: for a given 12 it constitutes a bijective 

mapping of points 3 .Translations in N-geometry are not necessarily commutative,  in general: 

1412312143  

1=2=3=4 
1 

4 

3 

1 

2 

5 
9 

4  7 

6 
8   

10   

3  7 

2 
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syn-ortho-parallelation 123

anti-ortho-parallelation  123 
 

4123  perpendiculation

534   anti-perculation

63512  

763
 

one has to pick the point with the proper direction:  

parallel thru 3 with syn-parallel point 

parallel thru 3  with anti-parallel point 
 

 

 

 

 

 

 

 

123 1233263362133623367 

123 1233263372133723376 
 

 

pro-hypothetion 12 
 

distance to 1 of protive right triangle 1 2 4 

 

in E-geometry sr(x2+y2) 1) 

 

12321213
 

cathetus-right-cathetus-protive-

triangulation  

 

 

 

 

 

 

 

 

 

pro-cathetetion 1213 
 

41213 pair minority not necessary

5124  picking smaller distance

6124  picking greater distance 

751

81716 

1239758 

distance to 1 of protive right triangle 15 9 

in E-geometry sr(abs(x2-y2))    2)
 

 

side-side-right-triangulation 

 

 

 

 

 

 

 

 

 

 

 

 

One can also introduce contra-hypothetion 12and contra-cathetetion 12 

giving contrive triangles. 
 

Calibrated functions refer to the proto-pair oe (what is called 'calibration'), they are marked by 

function-symbol apostrophe . The following triangle constructions are important examples: 
 

cali-adipension 12 gives the calibrated absolute difference 
 

1212oe12121o1e 

 

cali-pro-hypothetion 12  giving a protive triangle, in E-geometry for sr(1+x2)

12212oe   
 

cali-pro-cathetetion 12  giving a protive triangle, in E-geometry for sr(abs(1-x2)) 

121212oe11212oe distance to 1 of

11212oe111212oeprotive right triangle 1 2 12
 

One can also introduce cali-contra-hypothetion 12and cali-contra-cathetetion 

12 giving contrive triangles. 
 
1)

 sr(…) is the square root function - in English we have to stick to Times-Roman characters, no 'root' character available 
2) abs(…) is the absolute value function - no vertical bar symbol available in Times-Roman   
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Calibrated relations refer to the proto-pair oe as well. One can define extra-relation-constant  cali-

circlity (short for 'cali-circle-interiority' )  by 1o1oe that applies for all points 

inside the cali-circle-line o1oe . This will be a useful property in connection with the Klein-

model of L-geometry (section 4.6). In addition to proto-pair of basis-point-constanto and e one can 

define a reference proto-line by the property proto-linity and extra-point-constant strings. These 

points will be made use of for so-called proto-extrafunctions. 

 

proto-linity  1oe1 
   

proto-minus-end m eooe on proto-line

proto-full f oeoe on proto-line double

proto-dimi c oe on proto-line center (half)

proto-threehalf g oeoc on proto-line three half

proto-quarter v oc on proto-line quarter (half of half)

proto-right r mooie on proto-line for right angle

proto-halfright w moooieoee on proto-l. for halfright angle

cali-imago i oeooe outside proto-line, above origin (just a name)

cali-low l eoooe outside proto-line, below origin

cali-above a oeooe outside proto-line, above unit

cali-halfright x oa halfright-angle protive triangle to base oe
 

The ortho-line is the line orthogonal to proto-line through o , i.e. the line containing o and i . So 

there is a heuristic way of taking about proto-axis and ortho-axis, abscissa and ordinate (see section 3.9). 
 

Look at triangles:  there are 111 ways that one can classify a triple of points:  

 

no triangle triangle protive and contraprotive 

three equal points 

two equal points 

internity , bisecting, smaller or greater 

 obtuse, isoscelic, smaller, greater 

 right, isoscelic, smaller, greater 

 acute, equilateral 

 acute, isoscelic 

 acute, not Gauss, small-medium-great, sgm, msg, mgs, gsm, gms 
 

Besides triangles one can talk about quadrangles, quintangles and so on. However, one cannot 

immediately talk about polygons, as they necessitate numbers and a way to include tuples into the 

language - which can be done by extending the calcule, but not in a simple fashion (see section 5.1 ). 

 

A quadrangle has 4 sides (edges) and 4 corners (vertices, angles). It can be convex (diagonals intersect 

inside), concave (diagonals intersect outside) or pervex (diagonals lie outside).  
 

A quadrisymmetrical is a quadrangle with certain symmetries, essentially the following ones: 
 

 kite   2 pairs of adjacent equal sides 

 parallelogram  2 pairs of opposite equal sides (does not need the relation parallelity) 

 isosceles trapezoid two opposite equal sides and symmetry 

 rhombus  4 equal sides 

 equangle  4 equal angles 

 rectangle  4 right angles (only in E-geometry) 

 square   4 equal sides, 4 right angles (only in E-geometry) 

 quadrilateral   in L-geometry, see section 4.4 

 quadrate   in L-geometry, see section 4.4 
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2.4  Proto-extrafuncta 

 

Further properties  are introduced along the proto-line. Notice that proto-nonpositivity is not the negation 

of proto-positivity, as points outside the proto-line are neither positive nor negative. 
 

proto-positivity   1o1eoe1 

proto-nonnegativity   111o defining the proto-ray

proto-negativity   1o1mom1 

proto-nonpositivity   111o 

proto-minority    1212o121o2 

proto-equal-minority   1211212 

proto-radity    111e

proto-cyclicity    111f

proto-diametrity   1m11einside proto-diameter-segment me
 

Along the proto-line one can define extra-function-constant strings that are only applicable along the 

line. They are marked with function-constant characters that are also used in arithmetic calcules. 

Only in combination with the proto-pair one can include direction along the proto-line. Proto-functions 

are only defined on the proto-line and their values lie on the proto-line. The proto-pair oe constitutes 

sort of a measuring rod. Proto-addition is a little bit complicated, as appension produces sort of 

absolute value strings. One can define some more proto-functions connected to appension:  

 

proto-addition  12  12o12 

proto-duplication  1   111

proto-negativation  1   1me1oo1 

proto-subtraction  12  1212 

proto-absolution  1   1oeo1 

proto-absolute-subtraction 12 1212 

proto-bisection  1   1o1slash  for bisection and  

               tripfor dichotomition 

The following lination THEOREM strings justify the naming of the above functa: with proto-unit, proto-

minority, proto-addition and -negativation along the proto-line there is an ordered unlimited group. 

 

  proto-minority

TPM1  non-reflexitivity1111

TPM2  antisymmetry 12121221

TPM3  transitivity 123123122313

  proto-addition and -negativation 

TPL1  conclusity 121212

TPL2  neutrivity  111o1

TPL3  commutativity12121221

TPL4  associativity 123123123123

TPL5  invertivity 1111o

TPL6 monotony 1212112
 

Furthermore one can transfer the triangle constructions of hypothetion and cathetetion to the proto-

line: In E-geometry they are connected with square roots - that is why function-symbol  was picked 
 

proto-hypotion (1212oe1oio2 

proto-cathetion (21  12oeooo1oio2 

proto-hypocation (1  1oeeoio1 

proto-cathecation  (11e1oeooo1e.  
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Preparing for 'proportition' in E-geometry (section 3.3) and line intersection in the Klein model of L-

geometry (section 4.7) two functions proto-transition 123and proto-cisition  

123with condition proto-cisity are introduced. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There is no need for perpendiculation due the existence of  i , therefore one can allow for all distances 

to be zero. The distances o1 and o2 have been put to 4 and 5 , i.e. opposite sides of the proto-line, thus 

guaranteeing transsection. If one puts them on the same side, to 8 and 5 , it is cissection - if there is 

intersection at all, as given by cissectivity . 
 

Starting with three points  on the nonnegative proto-ray one gets: 
 

4=ioo1 

5=oio2 

6=o5 

7=56o3 oio2ooio2o3 

8=oio1 
 

proto-transition  
 

123 oe74

  oeoio2ooio2o3ioo14
 

proto-cisity  
 

123123oeio78

  123

  oeiooio2ooio2o3oio1
 

proto-cisition 
 

123123

  oe78 

  oeoio2ooio2o3oio1
 

The following definitions reach outside the methods employed so far and they will not be made use of in 

this chapter. However, as they will be used for some detours in other connection it seems appropriate to 

introduce them now, without any further, leave alone, deeper discussion. 
 

Find the dyadic points on the proto-line, starting frome with successive proto-bisection 1 ,  

proto-addition  12 and proto-negativation  1 . By this recursive definition one 

gets proto-dyadicity and if combined with cyclity the property proto-dyadic-cyclicity 
 

11e2[[212123[[3123 
 

111  

o 
e 1 2 3 

4 

i 

5 6 7 

8 

transition cisition 
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2.5  Metering 
 

In section 2.1 congruity- and minority-relations were introduced for pairs of points. They allow for 

talking about distances and comparing them without actually metering1) them in the normal fashion.  

 

What is metering? Metering produces a number for a given object so that one can compare it to objects 

of the same class and that by the number one has a proper ordering method of objects. Metering implies 

ordering, but one can ask the question the other way round, if  there is a metering for a given ordering.  

In N-geometry there is an ordering for pairs of points by their distance with pair-congruity and 

pair-minority  , however, the abstract calcules of planar geometry contain no numbers for 

metering. Congruity of pairs of points establishes equivalence classes of pairs of points. One can choose 

certain representatives for each class as it was done by defining the proto-ray by 1 . The points of the 

proto-ray replace the usual numbers for metering. The so-called proto-functions of section 2.4  

demonstrate that the intuitive purpose of metering is taken care of. The proto-pair calibrates the metering 

and one can thus define: 

 

cali-pair-metrition   
 

12oe12  
 

Cali-coordinates of a point with respect to proto-pair 

 

cali-abscissation  cali-ordination   

cali-mabation   cali-mabotion   metered absolute coordination 

 

1oe1 

1oi1 

1ooe1 

1ooi1 

 

This is the best one can do for metering of distances within abstract calcule pi . But there are other 

objects in planar geometry that one would like to meter: angles and areas of triangles and of higher 

polygons. Metering for a class of objects necessitates proper congruity- and minority-relations. They 

may be obtained by mapping the objects to pairs of points so that the objects inherit their comparison 

values from congruity and minority of the pairs of points.  
 

This can be done in the simple way that one defines object-congruity and object-minority with the use 

of  pair-congruity and pair-minority. But one can also use the representatives of pairs for a number-like 

metering, in our case by the points of the proto-ray. 
 

It will turn out that one can define angle-metering that can be done within the abstract calcule of planar 

N-geometry, as it will be developed in section 2.6 . It will become clear that one e.g. talk about zero, 

right, halfright, straight and full angle in the usual sense in N-geometry.  
 

For pair-metering the functions proto-addition   and proto-negativation  (establishing the 

ordered unlimited so-called lination group along the proto-line) were introduced. For angle-metering 

proto-angle-addition 12 and proto-angle-negativation  will be introduced to establish an 

ordered limited so-called cyclation group on the full-segment  from o to f , as given by  . 
 

Area metering, however, cannot be done in N-geometry. This will become clear in the next two chapters: 

There are two entirely different concepts of area in E-geometry and L-geometry. 
 

1) the expression 'metering' is chosen rather than 'measuring' as this expression is used in mathematics mostly with reference 

to subsets, whereas in geometry various kind of animals are getting metered.  
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2.6  Angle extrafuncta without metering 
 

So far nothing has been said about angles. There is no entity 'angle' in N-geometry. However, one can 

define functa that refer to two angles to be equal or to be smaller and to classify angles heuristically e.g.  

as zero, acute, right, obtuse, straight, reflex. There is no full angle, it is the same as the zero angle - you 

cannot define a full angle by means of a triangle. In planar N-geometry the entities that allow for talking 

ins some way about angles are triples 123 of points, where the first one denotes the vertex in 

question, which can be classified with their heuristic angle meaning: 
 

angularity    greater equal zero, less full  

tri-angularity     not zero, not straight 

zero-angularity    zero 

straight-angularity   straight 

line-angularity    zero or straight 

protivity     greater zero, less straight  

contrivity     greater straight, less full 

lini-protivity    greater equal zero, less straight  

lini-contrivity    greater equal straight, less full 

right-angularity    right, greater equal zero, less full  

 

The missing definitions will be given in section 2.7 .  

 

absolute-angle-congruity says that two triangles have the 'same angle' at a vertex, absolute-angle-

minority says that one triangle has a 'smaller angle' at a vertex than another triangle at one of its vertices. 

The comparison of angles is straightforward by comparison of distances. Notice that when talking about 

absolute angles no sense of angle is considered, meaning that 123132 .  
 

absolute-angle-congruity  absolute-angle-minority 

 

    

 

 

72145

83164 
 

123456 zero and straight angle inclusive 

12134546 

2145316456 
 

123456

12134546 

2145316456
 





There are triples of points that are neither absolute-angle-congruent nor absolute-angle-minor. 

113456  113456  456113 

121456  121456  456121  

 

For absolute-triangle-dichotomition one constructs an isosceles triangle and bisects the 

opposite side and constructs a new isosceles triangle of same sensitivity as the original one.  
 

12312131212  

1 

2 

3 

4 

5 

6 

8 

7 
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absolute-triangle-combination defines the construction of a triangle from two triples 123 

and456 each with a selected vertex 1 and 4 resp., so that new triple 1223 has an angle at 1, 

that is the sum of the two angles. The condition is tri-angularity. So far the heuristic justification. Notice 

that the new triangle 1217 is protive for acute angles, but can become contrive for obtuse angles. So 

far no sense of angles (protrive or contrive) has been introduced. The definition is done using ex- or and 

implicitly only isoscition, not circulition. 
 

absolute-triangle-combination 

12134546 
 

71312 

827  

91218 

1019

1191078

1211118 

13112

14121478 1214 for first angle 

154512 

164512 

171516 

18114417 

19118 

2018191517 

21120417 

22121 11423 for second angle 

1234562321221517 

 





 

1 2 23 is an isosceles triangle with the combined angle at 1 . Zero and straight angles are included. 

The combination of two acute angles gives the same sensitivity as triangle 123 , the combination of 

two obtuse angles changes the sensitivity. The somewhat strange construction is chosen so that one starts 

from a pair of points  12 and takes care that all angles are appended in the protive sense.  

 

With the use of circulition absolute-triangle-combination could be expressed much simpler (but the 

above definition was chosen in foresight of E-geometry where circulition is not basic). The following 

THEOREM shows that one does not need the dichotomition trick either as there is a simple way of 

constructing protive triangles by circulition:  

 

123456

1123211234511234612 

 

as derived by: 

 

7123 

84517 

94612 

101789 

1117210123456  
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In the following part of this section sensitivity of angles and  triangles is taken into account. Triangle-

dichotomitionis defined in a way so that reflex angles are bisected properly. This is the first 

functum where the sense of a triangle is crucial for the result.  

 

triangle-dichotomition1213
 

41312

524

61512

712

861

9768
 

it is also valid for fringe cases 

e.g. 3 on 4 5 or on 1 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that the triangle-dichotomition point does not lie between the two legs of a contrive triangle, but 

opposite. 
 

If one takes into account the sense of angles one gets angle-congruity and angle-

minority . One can do this very easily by comparing the bisected angle rather than the  

angle itself. Proflex angles between zero (included) and straight  (excluded) belong to protrive are 

mapped to acute angles (greater equal zero and less right), reflex angles between straight (included) and 

full (excluded) are mapped to obtuse angles (greater equal right and less straight). One then compares 

the bisected angles and gets: 

123456

121345461212345456
 

123456121345461212345456
 

Now everything is prepared to introduce segment-rotation. Segment rotation rotates a pair of points 

12 by a given angle around 1, where  the sense of rotation is accounted for. In order to take care of 

sensitivity properly the rotation is constructed by a quadruple rotation with the quarter angle (obtained 

by angle-quadrisection. i.e. double triangle-dichotomition) , so that only protive triangles are involved, 

even if one starts with a contrive triangle 345 or ends up with a contrive triangle 1217 
 

segment-rotation 123435 
 

6345 triangle-dichotomition

7346 angle-quadrisection

8347 protive right-triangle387
   ready for 4 applications 

   4 rotations at 12

91238 101978

1111038 1211178

1311238 1411378

1511438 1611578
 

12345 1711612
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Center-rotation122324 is the special case where the start 2 of the pair 

21 coincides with the rotation point of the triangle 234 . By rotating1 around 2 is a bijective 

mapping of points 1 . Center-rotation is a rigid motion (besides translation and mirroring) 1)  . 
 

123421234 

 

angle-congruity 

1234561123645134613 
 

angle-minority 

1234561123645134613 

 

One can define triangle-combination 12134546 that takes 

into account the sensitivity of triangles. One does a rotation of 13 by the angle at 4 (automatically in 

the proper sense), followed by adjusting the line so that an isosceles triangle is formed with 12 . 
 

12345611345612
 

This point and the base line 12  are a triangle with the combined angles, there are 8 possibilities:

123 456 12123456

- protive protive  protive or contrive e.g. two obtuse protive triangles give a contrive 

       e.g. two acute protive triangles give a protive 

- protive contrive protive or contrive 

- contrive protive  protive or contrive 

- contrive contrive protive or contrive 

 

One has triangle-doublition 1213 as 
 

123123123 which conserves the orientation 

 

 

One could define angle-metrition 121345 of an angle at 1for 

triangle 123 with respect to a pair 45 that would correspond to the straight angle but in section 

2.7 it is done with respect to the proto-pair oe that is a reasonable choice to represent the straight 

angle, so angle-metrition is skipped.  

 

 

In section 2.7 functions are introduced that refer to the proto-pair o , e . Having a unit length and a 

right angle one immediately thinks of sine and cosine functions. Therefore the two functions cali-

sinition 1213 and cali-cosinition  are defined: 

 

1231312oe   gives distance cosine from o 

123o2e1312oe  gives distance sine from o  
 

Cali-sinition and cali-cosinition corresponds to sine and cosine , one could compare angles by them. 

However, one has to be careful when angles between straight and full appear. Therefore one chooses 

another function.  

 

 

 

 

 

 

 

 

1)  One has to check for the fringe case of  the fixed center, i.e. 21 , but this is not essential.   
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2.7  Calibrated-angle and proto-angle extrafuncta 
 

So far angle-congruity and -minority, triangle-combination and -dichotomition was based on the use of 

certain pairs of points that were constructed in every case with reference to the given points. One can do 

better in N-geometry by what was called representatives (of equivalence classes) in section 2.5 by so-

called cali-pair-metrition  that uses the proto-pair o and e along the proto-line. 
 

A ternary function cali-angle-metrition is introduced, that corresponds to the use of cosine 

of the half angle by reference to the unit distance. Don't worry, this does not mean that anything new is 

involved, no numbers are necessary and even less, no so-called 'real functions' and 'real numbers'.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given three points 1 23 one can geometrically construct a point 13, whose distance to point o can 

be taken as a convenient meter for the angle at 1 in a triangle 1 23  relative to the proto-pair of 

points. All the steps can be performed by successive applications of functions of abstract calcule pi . But 

be careful and don't let yourself confuse by the sketch that looks very Euclidean but is only done for for 

plausibility: the circle looks like a circle, dichotomition of angle looks familiar too and pair-congruity 

looks 

like meaning the same Euclid distance. It is just a heuristic way to describe what is precisely expressed 

in the abstract calcule pi as construction of cali-angle-metrition. Cali-angle-metrition can be used both 

in E- and L-geometry. Cali-angle-metrition meters all angles from zero, along right, straight, up to but 

not including the full angle (what is called the proto-cycle-segment) If one had chosen the sine of the 

quarter-angle for metering angles as was done implicitly in triangle-combination the corresponding 

distances between oo for angle zero and oe for angle one would be less intuitive. 

 

With cali-angle-metrition one can define the missing relations of angularity already in N-geometry:  
 

lini-protivity  123123e 

lini-contrivity  [123e123123f]] 
 

halfright-angularity Hra123123w] 

acute-angularity Aca123123r] 

obtuse-angularity Ota123r123123e]] 

oblique-angularity Ola123123o]123r]]123e]] 

  

1213 

 

412

541oe

621oe

731oe

867

981518oe

1019oe 

1191oe 

1210114 chooses the greater distance 
 

12313oe812

8  9 

6 1

1 

10  12 

3 

2 

7 

13

I 

11  12 

4 

unit circle radius oe 

o e 

5  9 
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f 



version 1.0 Geometries of O 30 

With cali-angle-metrition one can express angle-congruity and angle-minority by comparing the angle-

meters given as distances of the metrition point from the origin point, i.e. by equality and proto-minority  

 

THEOREM strings:  angle-congruity  123456123456

   angle-minority  123456123456
 

Metrition determines a metering distance for an angle given by a triangle 123 . One can do it the 

other was round as well and construct a proto-triangle (isosceles with proto-legs) oe8 for point 1 

on the proto-segment. The function 1is called cali-meter-angulation : It is constricted from 

cali-pro-angulation 1or cali-contra-angulation  1. 

 

2eoo1

3e2ae2 above for zero

4oe231

5421  4 5 same direction as 2 3

6o54

7eo56

87ol7o low for o = 7

98764
 

There is the lovely result for cali-meter-angulation, that holds for angles greater than straight ones and 

zero as well:
 

119


eooeeoo1eeoo1aeeoo1eoo1

ooeeoo1eeoo1aeeoo1eoo1

oeeoo1eeoo1aeeoo1oleo

oeeoo1eeoo1aeeoo1eoo1o

oeeoo1eeoo1aeeoo1eoo1oe

eoo1eeoo1aeeoo1oeooee

oo1eeoo1aeeoo1eoo1ooee

oo1eeoo1aeeoo1eoo1oeeo

o1eeoo1aeeoo1ooeeoo1ee

oo1aeeoo1eoo1oeeoo1eeoo

1aeeoo1oeeoo1eeoo1aeeo

o1
 

Another idea is to investigate the manipulation of angles with respect to their angle-meters, obtaining 

some proto-functions. It is getting a bit tricky due to the cycle-character of angles, restricted to the cycle-

segment by . One has to start with proto-angle-bisection 1 
 

21   angle by cali-pro-angulation: proto-triangle oe2 with half angle 

3o2   dichotomition for half-angle proto-triangle oe3

14oe3 cali-angle-metrition thereof 
 

The next is proto-angle-duplication 1 
 

21   angle by cali-meter-angulation 

3oe2   triangle-doublition 

1oe3  cali-angle-metrition thereof  

4 

5 
6 

2  e 

8 

3 

7 

9 

o   1 
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One defines proto-angle-addition 1212 using the following trick, dichotomize the 

angles first and double the result 
 

3=1   first half angle by cali-pro-angulation: proto-triangle 

42   second half angle by cali-meter-angulation: proto-triangle

5oe3oe4 triangle-combination

6oe5  cali-angle-metrition thereof

76   proto-angle-duplication

12oe7 cali-angle-metrition thereof 

 

proto-angle-negativation 11 makes use of negativation 

 

21   angle by cali-pro-angulation: proto-triangle oe2 with half angle 

3oe2   reflection 

1oe3 cali-angle-metrition thereof 
 

Finally proto-angle-subtraction 12is given by1212 
 

THEOREM proto-angle-negativation and proto-angle-negativation 1(o1of1
 

 

Proto-angle-functions are defined on the proto-cycle-segment, with  their values on the proto-cycle-

segment too The following cyclation THEOREM strings justify the naming of the above proto-angle-

functa as there is a locally ordered group: 

 

  cyclative group 

TPC1  conclusity 121212

TPC2  neutrivity  111o1

TPC3  commutativity 12121221

TPC4  associativity123123123123

TPL5  invertivity 1111o

TPC6  low monotony1211e22e112 
 

The important fact is that one can do everything with respect to angles formally in N-geometry, there is 

congruity and minority of angles, there are acute, right, obtuse and straight angles, one can combine 

angles and one can bisect angles, one can meter them by distances with respect to a proto-distance. And 

all is possible without referring to a parallel Axiom and without any kind of numbers in calcule pi .  
 

 

One can introduce calibrated versions of opposition  and center-rotation  . 
 

cali-rotation   121oe2 rotation of 1 around o  

         by angle of triangle oe2 at o

         (essentially one parameter as only  

         direction of 2 is relevant) 
 

cali-opposition   12o12  sort of translation of 1 by o2 

         (essentially two parameters) 
 

cali-reflection    1oe1  mirroring with respect to proto-line  

         (no parameter involved) 
 

Cali-reflection of a triangle flips between protive and contrive triangles.  
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2.8  Triangle construction, congruity and other THEOREM strings 
 

Many THEOREM strings of E-geometry already can be proven in N-geometry. Among them are triangle 

constructions that lead to congruity THEOREM strings and special pairs of points for triangles that lead 

to unique intersection THEOREM strings. Let us start with Syniom  strings for triangulation functions:  
 

side-side-side-triangulation  1221341256 
 

1234561221341256 
 

This is the only instance in this chapter where isoscition is not sufficient and circulition is necessary.  
 

triangulation with two sides and one angle 
 

side-angle-side-triangulation

1234567  
 

 

 

 

 

 

81234

9183545

1019671234567
 

1234567

111234354567 
 

angle-side-side-triangulation 
 

1234567 

 

 

 

triangle  1  10  15 

 

 

 

 

 

 

 

 

81245 

91267 

1089 

1189 

121310

131012

14101319

15131014
 

triangulation with one side and two angles 
 

angle-side-angle-triangulation 

12345678

 intersection condition 
 

 

 

 

 

95413

10952322

114567

124116878

13412510412510 

12345678 
 

12345678

44456768785541352322 
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side-angle-angle-triangulation 

12345678 angle-sum less straight 
 

It cannot be constructed in N-geometry, however it can be done in both E- and L-geometry. It is simple 

in E-geometry, as it is replaceable by angle side-angle-triangulation due to straight angle sum. In L-

geometry it is more complicated, including determinations of horo-angle and horo-distance that have no 

counterpart in E-geometry. 
 

Triangulation with three angles 

angle-angle-angle-angulation 

123456789 angle-sum less straight 
 

It cannot be constructed in N-geometry and E-geometry, however, it will turn out to be possible in L-

geometry. 
 

Triangle-congruity THEOREM strings : 
 

123123213123213 independent of sense and ordering 
 

12345678    circulity holds for congruent sides 

12341256135724685678 

 

12345678

1234125613572468 circulity and congruent sides produce

121234565678   congruent triangles 

 

12345612      circulition produces triangle 

21341256121221341256
 

12341234121234 circulity implies circulition tri-angularity  
 

congruity sentence 2a  sas (two congruent sides, enclosed congruent angles) 
 

123456123456

12451346123456123456
 

congruity sentence 2b  ssa (two congruent sides, opposite congruent angles, pro case) 
 

123456123456

12451346231564123456
 

congruity sentence 3a  asa (one congruent side, two adjacent congruent angles) 
 

123456123456

1245123456312645123456
 

congruity sentence 3b  saa (one congruent side, one adjacent and one opposite congruent angles) 
 

123456123456

1245123456231564123456  

 

Same orientation of triangles 

123456123456

123456123456

3123124524656124524656  
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Triangular intersection THEOREM strings : 
 

angle-bisector-intersection   center inscribed circle 

1231231123223111233312
 

In a corresponding fashion, just too lazy to do it: 

perpendicular-bisector-intersection  center circumscribed circle 

altitude-intersection 

median-intersection    center centroid 
 

'1st Legendre' THEOREM : absolute-triangle-combination of triangle angles less than or equal straight: 

1231231212123231321

2112123231321 
 

'2nd Legendre' THEOREM : straight angle-sum in one triangle implies straightness in all triangles 

 

A final observation: point sets are given as relations with one argument exposed to the other ones: e.g. 

perpendicular-equidistancy  defines equidistant-line relative 4 . Some more:  
 

straight-line-particity 3 STL 12123 

circle-line-particity  3 CIL 121312 

ellipse-line-particity  4 ELL 1231142411323 

hyperbola-line-particity 4 HYL 1231412413123 

circle-area-particity  4 CIA 121312 

ellipse-area-particity  4 ELA 1231132311424 

hyperbola-area-particity  4 HYA 1231412413123  
 

 

What one cannot do in abstract calcule pi is talking about areas in any way (no shear-mapping, no 

cathetus theorem, no Pythagoras theorem, no area-equality, no area-minority, no relative area-metering, 

no area-combination of triangles and so on). 
 

 

 

2.9  Symmetry transformations 
 

Given cali-rotation  , cali-opposition  and cali-reflection  of section 2.7 one can ask 

if one can combine them to produce cali-motions. Certainly one can do it, it just remains questionable 

to what effort. It would be nice to obtain a group of symmetry transformations. In N-geometry only cali-

rotation and cali-reflection preserve distance-meters, meaning that they induce symmetry 

transformations. 
 

It will turn out that cali-rotation  , cali-opposition  and cali-reflection  in calcule 

piepsilon of E-geometry preserve the distance of segments and angles as well. So by combination one 

can define function eu-motion  . It induces symmetry transformation of E-geometry 

forming the group of two-dimensional Euclidean-motion. 
 

It will turn out that in calcule pilambda of L-geometry a similar procedure allows for defining lo-motion 

 corresponding to the group of two-dimensional projective motions. 
 

Deep meaning lies in the fact that calcule piepsilon of E-geometry has the additional gauge-symmetry 

given by cali-tension  2  that has no counterpart in L-geometry. See section 3.5 for its 

definition and meaning.  
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3. Planar E-geometry 

3.1  Ontological basis of calcule piepsilon of planar Euclid E-geometry 
 

Drop circulition (circle-circle)  and circulity from calcule pi and replace it by 

isoscition which produces isosceles triangles from intersection of circles with equal radii, its condition 

is isoscity . It will turn out that one then can define circulition as an extra-function-constant, 

if one makes use of the unique parallels  that is new in abstract calcule pi of planar Euclid E-geometry. 
 

sort       Euclid-point, Евклид-точка 
 

basis-function-constant    condition  

appension    1234 

isoscition     1231213

linisection    1234 
 

New necessary and convenient ternary extra-relation-constant strings for Axiom strings 
 

isoscity     

123  121211211313

    121121131322 
 

lina-isoscity     

123  1221211211313 
 

tria-isoscity     

123  123123 
 

normal fringe excluded 

  

 
 

 

 

 

 

 
 

 

 
 

 

   

 

 

 

 

Possible arrangements for isoscition 

extra-relation-constant strings for  pair congruity , tri-angularity ,  internity  

 and parallelity  are taken without changes from abstract calcule pi . 
 

Besides the modification of the ingredients for the abstract calcule piepsilon of planar Euclid E-geometry 

the inclusion of the Unique-parallel-axiom and the Axiom mater of inductivity changes the character of 

the abstract calcule totally. Whereas abstract calcule pi contains limbHOOD strings, i. e. sentence strings, 

that are neither TRUTH or FALSEHOOD strings, abstract calcule piepsilon is a complete calcule, which 

means that every sentence is either a TRUTH or a FALSEHOOD string. Another essential difference will 

be that one can express cissectivity (and thence parallelity) without the use of entitor character as a mere 

junctive formula string, see section 3.3 . By the way, the same will be true in Lobachevsky L-geometry, 

although with different junctive formula strings.  

1=2=3 

3 

2 

1 

 

3 

1 2 

2 

1 

3 

1=3 2 

3

3 

1=2 lina-isoscity 

tria-isoscity 
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3.2  Axioms of planar Euclid E-geometry and inductivity 
 

Firstly planar N-geometry is modified, as circulition can be replaced by weaker isoscition. Therefore 

Axiom strings A9 to A14 are replaced by A9e to A13e ; a numbering gap A14 occurs on purpose. As 

mentioned at the end of section 3.1 one could replace nonjunctive cissectivity of calcule pi in 

the ontological basis of calcule piepsilon right from the beginning by junctive eu-cissectivity1) 

(defined in section 3.3 ). Secondly the Unique-parallel-axiom A21e  (with character e for 

Euclid) is supplemented to N-geometry (and closes the numbering gap of N-geometry). 
 

 isoscition 
 

A9e auto-isoscition  11111
 

A10e tria-isoscition  123123

 congruities  112313212313
 

A11e tria-isoscition  12341231413

 uniqueness  124123
 

A12e tria-isoscition  123123

 duplicity of orientation 123211213
 

A13e lina-isoscition  123123

 dichotomition  1232112113
 

 parallelity 
 

A21e unique parallel  123412341234

     51235345
 

Furthermore a mater (usually called 'Axiom-scheme' but the expression  'scheme' is preferred to be used 

otherwise) of Axiom strings is added for inductivity. Without mater of inductivity calcule piepsilon 

would not be complete. E.g. one could add Axiom strings A26 that would allow for some or all dividings 

of angles. 
 

An Axiom mater is expressed in metalanguage Mencish (see section1.2). Metacalcule piepsilon (relating 

to object-calcule piepsilon) contain metastrings that are metaobjects: e.g. the metavariables are written 

as 1 ; 2  etc. . The metafunction    (see section1.2) replaces strings. The metaproperty 

sentence takes care of proper syntax of the sentences of the object-language. But no further details 

are given; it is treated reference (10) .  
 

Axiom mater of inductivity  
 

1 sentence111 2 1 3 1 4 

TRUTH11o11e1234

111211311412

111234 

11121131141234

1112341112113123

1112311  (also implying two-dimensionality) 
 

 

 

 

 

1) the prefix 'eu' is chosen for 'Euclid' as  'lo' will be chosen for 'Lobachevsky' - by coincidence Greek  means pretty!.   
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3.3  Fundamental extrafuncta 
 

Parallelity  and the syn- , anti-, pro-  and contra- relations are taken from N-geometry 

(section 2.3) , remember that they contain an entitor . One can define corresponding relations in E-

geometry without entitor, using parallelograms, e.g. mono-parallelity 
 

mono-parallelity 123412341234

   23123441421343
 

and get THEOREM parallelity is mono-parallelity in E-geometry. 

 

123412341234  
 

The second parallelogram  in the definition of mono-parallelity excludes the cases where the line 34 

crosses 12 in a special fashion. Using mono-parallelity instead of regular-parallelity there is eu-

parallelity , eu-cissectivity and eu-linisectivity without 

entitor: 
 

123412341234 
 

1234123412341234 
 

123412341234 
 

Notice that the two following constructions is done strictly in calcule piepsilon , syn-perculation is used 

and could be expanded:1211212 . The constructions cannot be done 

in N-geometry or L-geometry as a linisection is included, that cannot be guaranteed in N-geometry or 

L-geometry. 
 

proportition  

12 
 

512 

62513

71214 

 

the construction is done such that the fringe case  

14 is included 



817117

917171716

here E-geometry relevant, linisection guaranteed 
 

10121279


proportition a/b=c/d d=(bc)/a as distance to 1 

 
 

 

 

 

 

 

 

 

 

  

123410 

12121214112141

121411214121213
 

square-division  12 

1231223
 

square division d=b2/a  

1 2 

3 

7 

5 
6 4 

8 

9 

10 

a 

b 

c d 
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In N-geometry little use was made of circulition, most functions depended only on isoscition, essentially 

circulition was only necessary for constructing a triangle from its three sides. Now that there is only 

isoscition in the ontological basis of abstract calcule piepsilon it is yet to be shown how to do circulition. 
 

The idea of the construction comes from the semiconcrete calcule of planar Descartes geometry that is 

introduced further down in section 3.9, where one observes that for metering distances only so-called 

hypothetion, i.e. Pythagoras-addition-root sr(x2+y2) and so-called cathetetion, i.e. Pythagoras-

subtraction-square-root sr(x2-y2) appear beside the four basic arithmetical operations, geometrically 

speaking everything can be reduced to the use rectangular triangles and Pythagoras THEOREM . It will 

be shown that general square roots can be constructed. Farther below in this section the preparation for 

square root is done. However, in calcule piepsilon there are no numbers for metering. But still one can 

do the necessary constructions. Tricky, isn't it. Use will be made of representing distances by pairs of 

points. For better understanding only basis-function-constant strings are used. As one has to take into 

account fringe cases like a right angle and degenerate collinic case one has to include jections. For 

treating acute and obtuse angles with one expression the emination and emaxation functions are 

necessary. 
 

case heuristic sketch a 

 

b c d2= 

a2+b2 

 

e2 : 

c2-d2 or   

d2-e2 

= 

< 

> 

f= 

e2/(2a) 

h= 

sr(b2-f2) 

 

1.1.1  

 

1 sr(5) sr(2) 6 4 < 

 

2 1 

1.1.2  

 

1 sr(2) 1 5 4 < 

 

2 1 

2.1.1  

 

2 sr(2) sr(2) 6 4 < 

 

1 1 

2.1.2  

 

2 1.5 2.5 6.25 0 = 0 1.5 

2.1.3  

 

1 sr(2) sr(5) 3 2 > 1 1 

1.2.1  

 
1 2 1 5 4 < 

 

2 0 

1.2.2  

 
1 1 0 2 2 < 

 

1 0 

2.2.1  

 
2 1 1 5 4 < 

 

1 0 

2.2.2  

 

 

1 0 1 1 0 = 0 0 

2.2.3  

 

 

1 1 2 sr(2) 2 > 1 0 

2.3  0 0 0 0 0 = 0 0 

 

Principal arrangements for circulition including collinic cases 

 

An isoscelator (see section 1.5) allows only for the same radius of the two circles. Contrary to the usual 

requirement of freely using two separate roundedges for circle-circle-intersection (circulition) an 

isoscelator is sufficient for E-geometry: That is why the Axiom strings A9 to A14 of N-geometry got 

replaced above.  
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Locust THEOREM : circulition i.e. intersection of two circles with the use of an isoscelator (see section 

1.5). The function locustition (for its construction fulfills circulition Axiom strings A9 to 

A14 of section 2.2. if circulity applies. 

 

From Heron's triangle formula in E-geometry one gets the h=sr(b2-((a2+b2-c2)/(2a))2) as height formula: 

relative to base line a : The radicand cannot be negative - this is guaranteed by circulity (as defined in 

section 2.1) . There is case 1 for a2+b2<=c2  and case 2 for a2+b2>c2. In the preceding table the two 

cases are specified in detail. The trivial possibility of 123 is met also. 
 

construction of triangle (12(12341234  

with sides a, b and c  
 

illustrated for the triangular case 1.1.1 where a2+b2<c2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     The locust 1) 
 

 

8 auxiliary triangles  

right for pro-hypothetion  129 

equilateral for perpendiculation 568  18719 

isosceles for pro-cathetetion 131415  21226  12526 

right for square-division  1167  17207 

  

52113  appension 

651   pair-doublition 

712

856   equitriangulation 

91813  dispension 

1029 

112924 

12109

1310119 only emination 

14139

1512149  isoscition 

 

1681915 

1771915 

18717

19187 

207161719  transsectivity 

21211720

22211

2322113

2421221212223

25124  with decision 

and finally with 3 decisions:: 

(1234

125311563111253125324 


1) according to Eva Hutzelmeyer  

1 2-14 

4 

3 

5 6 7 

8 

9 

10-13 11-13 

12-14 15 

16 

17 18 

19 

20 

21 22 

23 

24 

25 

a 

b 

c 

d 

e 

f 

h 

(1234 
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By successive insertion from 5 up to 30 into 25 one obtains an expression for locustition 

with condition 1234  (it is not explicitly developed as it is a very lengthy 

expansion that fills many pages with many appensions    , isoscitions    and decisions 

, but only one linisection   . 
 

Circulation 1234 is the only basic-function of N-geometry 1) that is not transferred with the 

same axiomatic definition to E-geometry.  However, there it can be replaced by locustition as an extra-

function defined by composition. 
 

How about orientation? No problem: protivity and contrivity had been defined with the use of isoscition 

only in N-geometry, so the concept is valid in  E-geometry and  L-geometry as well. The same applies 

for the concept of angles with the angle-congruity, angle-minority, triangle-dichotomition, triangle-

combination, rotation and so on. However, there is the one outstanding new feature, that is based on 

Axiom A21e 'unique parallels' . In Legendre's first THEOREM the possibility of angle-sums less than 

straight has to be dropped: 
 

THEOREM : absolute-triangle-combination of triangle is straight 

1231232112123231321 
 

From this one gets an easy for the construction of a triangle of one side and two adjacent angles side-

angle-angle-triangulation 34345678 . Notice that the condition 

is expressed by protivity. 

 

Due to straight angle sum it can be reduced to angle-side-angle-triangulation  . Do 

a combination of the two angles and take its difference to the straight angle as the second angle.  
 

12345678 34512676345678 
 

Desargues THEOREM 'parallel triangles' 
 

123456123456

124523563156

14252536142525363614

1425253625363614 

 

Pascal THEOREM 'transitivity of pairs of parallels' 
 

123456

123456356234611245

124312231243 

1243455612431423 

 

 

Important observation: although this quaternary relation eu-cissectivity is somewhat lengthy when it is 

expanded in order to express it by appension, isoscition, linisection and decision it serves the desired 

purpose: there is no entitor involved, junctive logic only! This means one could start with eu-cissectivity 

right from the beginning in the ontological base and the Axiom strings. 

 

 

 

 

 

 

 

 

1) contrary to L-geometry, where circulition is a basic-function as well (section 4.1)   
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3.4  Aria on area extrafuncta 
 

Infinite straight lines and rays, angles, circles, polygons like triangles or quadrangles and areas of 

polygons, none of these are part of the ontological basis of geometry of O. If one would enrich the 

ontological basis by some of them the theory would become even more complicated: straight lines and 

circles would be relative easy, but already angles would pose some difficulty and what the hack is an 

'area' ? One has to realize that the expression 'area' is used in two meanings in everyday English: 
 

- areal set, i.e. a set of points that lie within one or more closed boundary curves 

- areal meter, i.e. number for the size of an areal set 
 

The problem is that there are neither point sets nor numbers in geometry of O calcules, and thus not in 

piepsilon . The only objects that are available are polygons given as tuples of points. But still one can 

talk about two polygons have the same size of  areas, or that one is smaller than the other one. And this 

one can do without numbers, but rather by comparing the parts of polygons that one cuts out with 

scissors, scissor-congruence is the expression that heuristically characterizes this method. As all 

polygons consist of triangles it is sufficient to treat triangles. Triangles can be built up by triangles too. 

The heuristic idea is that congruent triangles have equal areas and that areas are in some way 'additive'.  
 

What one needs are definitions of  area-eqivality of triangles and area-minority of 

triangles  that meet our intuitive understanding of areas. The definitions for polygon-

area-eqivality and  polygon-area-minority can be given on this basis for all arities. On the way to find 

the triangle-area-relations one has to use what was called relative metering in section 2.5 where this 

method was used for angles. Absolute metering will be introduced in section 3.5 where the calcule pi is  

enriched by some sort of numbers. One starts with shear-mapping of a triangle to a right triangle of equal 

area by scissor-congruence: the proof for triangle-rectification , however, necessitates 

Archimedes Axiom. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scissor-congruence buildup of right triangle 110 3 that is area-equivalent to the original triangle 

12 3 is obtained by constructing parallelogram 42 2 6 and rectangle 41 10 9 

using bisection points 5 and 7 resp. . Starting from 8 one constructs a ladder of parallelograms 

and rectangles that area-combinations of the same two triangles. The point 10 is obtained by triangle-

rectification 10123that has already been defined in N-geometry; however, height of a 

triangle has no meaning with respect to area in N-geometry (and not in Lobachevsky geometry as will 

be seen). Of course the construction of parallelograms by attaching the mirrored triangle to a triangle is 

only possible in E-geometry. If one wants to avoid the Archimedes-reasoning for obtuse-angles as above, 

one can pick the longest sides of triangle 123 and 456  resp. as bases using emination 

and emaxation and follow the above procedure with the base line between (properly renumbered) point   

3            4          1 

6            2 

5 

9            10 

7 

8

5 
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1 and point 121223. The reasoning for scissor-congruence then includes only 

parallelograms and rectangles and is thus straightforward. 
  

area-exometrition

1245
 

construction of right triangle 1914  

with same area as 123  

and base line of length 45 

 

8123   rectification

91245 new base line

1015   

1191018

1212

13111212  linisection ok

1418213  triangle comparison  

12345
 

7456

1511447
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tri-angularity condition 123 is not necessary, area-exometrition includes the fringe cases of 

linicity as long as 1245.
 

Use was made of proportionality 19 to 12 equaling 911 to 213 . If base distance 

45 is less than distance 12 one could construct the points in N-geometry and thus in L-

geometry as well. However, in the other case there is a linisection problem and thus the definition of 

area-exometrition depends on parallelity Axiom and cannot be meaningfully used in L-geometry. 

 

Now everything is prepared for talking about the area of triangles without metering area by some 

numbers or similar concept (see section 3.5). One defines area-equality  and area-

minority  (by comparing heights of triangles with base segments of equal length, 

neglecting sensitivity). Fringe cases of collinic triples are included. 

 

123456123456 

12451123454456
 

123456123456

12451123454456
 

THEOREM  self-referring area-exometrition is rectification 

 

1231212312123 
 

THEOREM of area-conserving  rectification 

 

1231212312123 
 

THEOREM of triangle area splitting  

 

123456123143

1235611435644242356  

4 

2 1 

3 8 

5

5 

9 

10 

11 

12 

13 14 

6

5 

7

5 

15 
points 6715 

included for  

area-comparison and 

area-triangle-

combination  

123 and 

456 

 

example has distance 

45 less than 

12 
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General area-triangle-combination12345is introduced  

in the following sense: a triangle is combined with another triangle to produce a right triangle that has 

the same base line and is built from two triangles that have the same areas as the outset triangles resp. ; 

the first three points must not be collinic. This, of course, is heuristic language, let's define it it in a 

precise fashion: 

 

12345 
 

745613 area-exometrition

812  anti-perculation

91847 

1091   

1191023 

 

combined triangle1211 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alternatively can introduce area-right-combination 1245of 

triangles in the following sense: a triangle is combined with another triangle to produce a right triangle.  

To this end the two triangles are transformed to right triangles with a common base that can be attached 

and sheared. This combination includes the case where the triples of points are on a line too. 
 

1245 
 

7123   rectification

821  syn-perculation

945612 area-exometrition

108749 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THEOREM: same area of two combinations 

 

12345612345

1212345612123456
 

THEOREM: combination with line triple 

 

12345612345456

1234563
 

This corresponds to sort of adding a zero-area, in a certain sense the combinations of triangles are 

associative and commutative as well, but it is a bit complicate to express it, as metering so far is relative 

to a distance. Constructions for area-equality and area-minority (based on for area-exometrition) are not 

symmetric with respect to the two triangles in question, they single out a cathetus of the second triangle 

for comparison. However one can do better: area-endometrition is an independent construction for 

every triangles itself. One makes use of the following THEOREM :  
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Cathetus THEOREM (Kathetensatz) is proven by two shear-mappings and one congruence. In the 

following the usual squares are not shown, but only the corresponding right-isoscelic triangles (obtained 

with diagonal). 
 

3623

3628 

3668 


3413

2712 

2418

3718


356136 

153234 

234134 


258128 

128237 

237127 


356134 

258127 
 

 
cathetus THEOREM 
 

1231213123123

1321133231 123123 
 

42113 

5231   perpendiculation 

61523
 

134356 

 

preparing for Pythagoras 

 

721  syn-riscolation

832  syn-riscolation
 

corollary Pythagoras THEOREM  
 

238127134 

 

1231213

1231232332

1221134 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric mean THEOREM (Höhensatz) is proven by three shear-mappings. It has the advantage that 

one does not have to know which leg is the smaller one 
 

431

524 

65214 

716
 

123167   right isoscelic triangle 
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From cathetus THEOREM one can determine a right isoscelic triangle for a given triangle that has the 

same are, which means that one can meter the area of a triangle by a distance, i.e. the cathetus of a right 

isoscelic triangle. This is used for the introduction of area-endometrition 12. 
 

area-endometrition 
 

4123  rectification 

51214 

6251

7251  new hypotenuse

817  Thales 

dichotomition 

967 

108169 syn-resection 

1112110

12111

123 
 

12311112 right isoscelic triangle 

 

 

Now one can also express area-equality and area-minority using THEOREM  strings
 

123456124511234456

123456
 

123456124511234456 

123456
 

One has to pay a price for independent area-endometrition: the metering for the combination of triangles 

is not done by appending two distances, but rather by a slightly more complicated procedure: the 

diagonal of a right angle with the two meters.  

 

But such an alternative way of metering has already occurred in section 2.6 for triangle-combination and 

shown to be totally acceptable. The deeper reason is that monotonous functions generate new meterings 

from a given metering. In the present case the procedure is based on 'Pythagoras' THEOREM 

 

It means that one takes the square root of area for metering, which implies that the corresponding 

combination function area-combo-endometrition1245is 

essentially the square root of the sum of the two squares (as will become  more clear in the section 3.6 

that allows for talking about addition, squaring etc. )  

 

area-endometrition (with respect to 1)   7123

area-endometrition (with respect to 4)   8456

        91248

        101279

        1121

so one can define area-combo-endometrition:  1211179

with respect to 1 and line 12    123456
 

and has a THEOREM (that precedes the 'normal' addition of areas as given in the section 3.6) stating that 

the area of combined triangles can be also determined by a Pythagoras kind of procedure. 
 

1234561245

12123456123456  
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3.5  Cali-extrafuncta and metering 

 

Lets add some functions that are based on proto-pair oe.   heuristic comment 

 

cali-multix-portion   12oe12 o1 . o2

cali-quadrix-portion    1oe11  o12

cali-divix-portion 2o 12o1e2 o2 / o1

cali-recix-portion 1o 12o1ee 1 / o1 
 

area-equality and area-minority fulfill the requirements for an class-ordo-relation. With reference to the 

proto-pair o e one can specify a representative for every class of area-equal triangles: 
 

Cali-area-exometrition 12

123123oe
 

Now one has THEOREM strings that express area-equality and area-minority with reference to cali-area-

exometrition
 

1234561245123=456

123456
 

1234561245o123o456

123456
 

Alternative area-square-metering with application of 'mean' THEOREM . The meter is the side of a right 

isoscelic triangle that has the same area. For the start with any triangle, one needs shear-mapping and 

application of  'mean theorem' . It means that one takes the square root of area for metering.  

 

 

By the way: Hilbert is in error in his definition of biradical numbers in §9 of reference (3) when he 

introduces a fifth (total) function sr(1+x2) besides addition, subtraction, multiplication and division, he 

forgot the sixth function sr(1-x2) that is partial, or he should have simply chosen sr(x) as fifth (partial) 

function.  
 

 

Cali-biradication 12 is the inverse to cali-quadrix-portion: 1122 , it 

can be programmed by a geometrical construction for  the expression: sr(abs(x))=( sr(1+x2)/sr(2)) 

sr(abs(1-((1-x)/sr(1+x2))2)) using cali-multix-portion and cali-syn-resection and as in neutral geometry 

cali-adipension i.e. absolute value of (1-x) , cali-hypothetion  and cali-cathetetion that have been 

identified in E-geometry as hypotenuse and cathetus Pythagoras square roots sr(1+x2) and sr(1-x2) . The 

critical condition that the radicand of a square root must be nonnegative means for sr(1-x2) that x2 must 

not be greater 1 . In the following construction this is taken care of automatically.  

 

cali-endo-biradication 

 1212oe 
in E-geometry for sr(x) with x<=1 

 

 

312oe 

413 

521 

64125 
 

126

112oe1221 
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cali-exo-biradication   oe12 
in E-geometry for sr(x) with 1<= x 

 

 

312oe 

412 

531 

64135 
 

12

121312oe1 
 

cali-biradication     in E-geometry for sr(abs(x)) 

 

312oe

4123   picking smaller distance 

5123   picking greater distance

613 

741 

86147 

12 

11212oe11212oe

1212oe1
 

 

cali-area-endometrition 12 is based on the result 123 of area-

endometrition where the result is located on the proto-line 
 

123oe1123


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3.6  Proto- and cali-extrafuncta 
 

Now one can do one step further and relate all metering to the proto-line. In section 2.4 there were 

already defined: proto-linity, proto-positivity, proto-addition, proto-negativation etc. . All of them based 

on appension. They turned the proto-line into an ordered unlimited group. Based on unique Unique-

parallel-axiom A21e and linisection one has proportition and this leads to the definition of proto-

multiplication, proto-reciprocation and thus extending the proto-line to an ordered unlimited corpus1) (in 

German Körper, in English usually called  field which, however, is a very bad name, as so many different 

systems or entities are called field in mathematics ).  Based on Unique-parallel-axiom A21e and isoscition 

one can introduce proto-biradication etc. and thus one extends the proto-line even further to an ordered 

unlimited corpus of biradical numbers, a simple extension of the rational-number corpus to an algebraic 

corpus. By the way: in proto-functions of E-geometry one sees that appension of points is related to 

addition of numbers, linisection to multiplication and isoscition (and circulation) to biradication. 
 

based on linisection 
 

proto-multiplication  (12 

12oe12
 

proto-quadration  (1   

 (111    
 

proto-reciprocation  (11o 
 

 (1o1e e
 

proto-division  (122o 
 

121 (2
 

proto-reduction  1m 
 

11e1e     (x-1)/(x+1)
 

proto-upduction  1e 

 

11e1e     (x+1)/(x-1)
 

cali-tension   2 

 

12o1ooeo12   stretching with center o 
 

based on isoscition 
 

proto-biradication  (1   inverse of proto-quadration 

is obtained by applying cali-biradication to o1 and putting the result on the positive protoray: 

1oeoo1
 

Now one can express individual-constant strings based on proto-pair oe (representing 0 and 1 ) 

proto-full foe  2    cos(pi)=-1 

proto-straight e    1    cos(pi/2)=0 

proto-right re((f/  1-(sr(2))/2)=0,292…       cos(pi/2)=(sr(2))/2 
 

THEOREM  (1(1f
 

THEOREM proto-biradication is non-negative inverse of proto-quadration 

11(11  11(11 
 

 
1) One could call proto-functions on the proto-line linic Euclid-functions as opposed to planar Euclid-functions  
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cross-ratios will be useful for Lobachevsky geometry in chapter 4 . For Euclid distances between four 

points A  1  2  B  (on a line in this order) it is defined: c = (dA2 dB1 ) / (d2B d1A ) = (dA2 / d2B ) / (dA1  / 

d1B) with c values greater or equal to 1 , value 1 if points 1 and 2 are the same. For an ordering A  2  1  

B the function gives values between 0 (excluded) and 1 .  
 

proto-cross-ration  (31143224 

(123432414231((u-y)(v-x))/((v-y)(u-x)) 
 

 

A little extra for the friends of projective geometry: 

 

For constructing cross-ratio in general one has to map pair 1and 2 so that one point 1' is at the center 0: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  construction central distance   construction cross-ratio 

 1  2 start pair with distance c  E thru 3, orthogonal to AC 

 A B chord  F distance 1, orthogonal to 3E 

13  ray  G linisection F4xE3 

A3C C  chord thru center  H equal distance 3G and  GH 

 3 =0  I orthogonal 3G in distance c' 

BC  ray  J linisection IH with FC 

13xBC= D linisection of rays   gives cross-ratio c as FJ 

DA  ray (nice for understanding)   

D2  ray    

D2xAC= 4 linisection of ray and chord 

gives distance c' 

   

 

cali-syn-resection (1212 intersects cali-circle with line of pair 

inside, in same direction, cali-anti-resection (1212 in opposite 

direction  
 

(12(oe12 (12(eo12
 

The cross-ratio of a pair inside the cali-circle and its intersections with the cali-circle is called cali-cross-

ration12 it has result on positive proto-ray outside the cali-circle 

            1 

1212212112212 
 

cali-cross-metrition12  is obtained from cali-cross-ration by proto-reduction, 

it hasresult on proto-radius   1212 
 

One can define  (either with the use of proto-biradication or directly) some functions that are meaningful 

in connection with triangle construction:  

1
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THEOREM proto-hypothetion , proto-cathetetion , proto-hypocation 

and proto-cathecation can be expressed by proto-biradication in E-geometry 

representing sr(x2+y2) , sr(x2- y2) , sr(1+x2) and sr(1-x2) resp.  
 

1111  11(11 
 

 

Special cases on the proto-diameter lead to four more proto-functions with condition 12 
 

proto-ortho-metrition 

1221    conventional y/sr(1-x2) 
 

and its inverse proto-ortho-immetrition 

1221    conventional y.sr(1-x2) 
 

proto-para-metrition 

122e112  conventional y/(1-x(x+y)) 
 

and its inverse proto-para-immetrition 

122e1e12 conventional y(1-x2)/(1+xy) 

 

 

THEOREM proto-hypothetion of areas, stating that the cali-area-endometer of a combined triangle is 

given by proto-hypothetion of the cali-area-meters of the two triangles; located on the 

proto-line. 12123456123123
 

cali-area-quad-metrition 12 is obtained by proto-quadration of cali-area-

endometrition. It corresponds to the conventional area metering. The result is located on the proto-line 

Notice that cali-area-protometers have to be bisected with (to get a result that corresponds to the 

fact that the area of a triangle is half the product of base and height lengths.  

 

123o123
 

THEOREM proto-addition of areas, stating that the cali-area-meter of a combined triangle is the sum 

with 'proto-addition of the cali-area-meters of the two triangles (observe that cali-area meters 

are located on the proto-line.  
 

12123456123123 
 

There is a constructive way to produce the full plane of E-geometry by the so-called coordinate method. 

There is the THEOREM of unique existence of coordinates (2 and 3 for 1): 
 

1232313;o221312131

(2;oio2(oe(2;oio2o3  existence
 

454515;o441514151

(4;oio4(oe(4;oio4o5

2435         uniqueness 
 

Proof: Coordinates are obtained by perpendiculations to the two axis, the proto-line and the ortho-line: 

21oe1  31oi1
 

proto-angle-addition 12 is revisited: 
 

 

THEOREM  trigonometric expression 1) for proto-angle-addition. For angles less than the straight one that 

is angles of the radity-segment it holds: 

 

1)  this leads to proto-dyadic-angle-metrition (1 recursive definition, only for dyadic points in cycle-segment, 

values between  o and f as it will be introduced in section 3.7 .  
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12

12((121211112222) 

 

corresponding to f(x+y)=1-cos((x+y)/2)=1-cos(x/2)cos(y/2)+sin(x/2)sin(y/2)=  

f(x)+f(y)-f(x)f(y)+sr((2f(x)-f(x)2)(2f(y)-f(y)2))   for  0<=x,y<1 where f(x)=1-cos(pi.x/2)  

 

from N-geometry. For proto-angle-bisection one has  
 

THEOREM  1ee1 corresp. to  f(x/2)=1-cos(x/4)=1-sr(1-cos(x/2)/2) 

 

Now one can express as further individual-constant strings based on oe (representing 0 and 1 )  

proto-halfright  wreee((f/    corresp. to1-cos(pi/4)=

   ee((f/           1-sr(((1+sr(2)/2)/2)=0,073… 
 

 

 

3.7  Abstract calcule deltaalpha of biradical numbers 
 

The proto-line with its proto-functions in abstract calcule piepsilon  correspond perfectly to the abstract 

calcule deltaalpha of ordered corpus of biradical numbers that has the following ontological basis: 
 

sort     

basis-individual-constant n u 
 

basis-function-constant  

addition    

negativation    

multiplication   

reciprocation   1n 

biradication   n1 
 

basis-relation-constant  

positivity   < 
 

basis-functum strings of deltaalpha are defined via the Axiom strings. Only the angle-related extra-

functum strings are written down explicitly, the other ones are straightforward as proto-functa of pi . 
 

extra-individual-constant b mu   buu muu 
 

extra-relation-constant  

nonpositivity    

negativity,  nonnegativity   

minority, equal-minority  

radity        1n11u 

diametrity       1mu11u 

cyclity        1n11b 

dyadicity       recursive1) definition 

dyadic-cyclity       recursive definition 

rationality        recursive definition 
 

extra-function-constant  

duplication    

subtraction    

quadration    
 

 
1) in E-geometry recursion occurred only in connection with extensions to dyadic numbers and only for relations, not for 

functions. For calcule delta-alpha it may occur for relations as well and function-definition by cases is not excluded  
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absolution   

division   2n 

bisection    

hypothetion   (   sr(x2+y2) 

cathetetion   (21 sr(x2-y2) 

hypocation   (   sr(1+x2) 

cathecation   (1u  sr(1-x2)
 

angle-bisection  1   angle-functions are partial in cycle-segment 

angle-duplication  1

angle-addition, cyclation 12

angle-negativation  1 

angle-subtraction  (12 

dyadic-angle-metrition 1  partial in Klein-numbers in cycle-segment 
 

With the following 17 Axiom strings, that are not written down explicitly: 
 

A1 neutrivity of addition A11 distributivity addition multiplication 
A2 associativity of addition A12 distributivity negativation multiplication 
A3 commutativity of addition A13 unus positivity 
A4 addition of negativation A14 exclusivity of positivity 
A5 double negativation A15 quadration of biradication 
A6 neutrivity of multiplication  n1111 
A7 associativity of multiplication A16 distributivity biradication multiplication 
A8 commutativity of multiplication  [n1n2
A9 multiplication by reciprocation  1212 
A9 multiplication by reciprocation A17 distributivity biradication reciprocation 
A10 double reciprocation  [n111 

 

and an Axiom mater of inductivity 1 sentence111 2 

TRUTH11nTRUTH111111n

111n11112112

11121112TRUTH11
 

Metatheorem for the two abstract calcules piepsilon of planar Euclid geometry and deltaalpha of ordered 

corpus of biradical numbers:  biradical numbers can be constructed geometrically in an abstract sense  
 

Metaproof idea: the Axiom strings of abstract calcule deltaalpha of the ordered corpus of biradical 

numbers with nullum-constant n and unus-constant u, functions addition , negativation 

, multiplication , reciprocation 1nand biradication and relation 

positivity correspond one-to-one to THEOREM strings for points of the proto-line of abstract calcule 

piepsilon with proto-origin and proto-unit, functions proto-addition, proto-negativation, proto-

multiplication, proto-reciprocation and proto-biradication and relation proto-positivity.  
 

Angle-functions of deltaalpha get definitions where one definition by cases is necessary:  

 

angle-bisection 11uu1 
 

angle-duplication 11u111 x-2x2) mod 2 

2 cases !  u11b1b11 
 

angle-addition 1212  x+y-xy+sr((2x-x2).(2y-y2))) mod 2 

  12121122bn

  12121122  
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angle-negativation 11n1ob1

angle-subtraction 121211 
 

The following functa are defined recursively, which is beyond our self-imposed rule that allows only for 

junctive logic for relations and composition of functions. However, this is not a problem as they are not 

really necessary, but just nice to have for understanding. Dyadic-cyclity determines dyadic points 

between n and b. Dyadic-angle-metrition corresponds to the conventional trigonometric function 

1-cos(pi.x/2) for dyadic input between 0 and 2 , as one can see from: 
 

1-cos(pi.0/2)=0  ,  1-cos(pi.(1/4)/2)=1-sr((1+sr(1/2))/2)  ,  1-cos(pi.(1/2)/2)=1-sr(1/2)  ,  1-cos(pi.1/2)=1 

1-cos(pi.(3/2)/2)=1+sr(1/2  and  1-cos(pi.2/2)=0 
 

dyadic-cyclity   [11u2[[212

    3[[3123 
 

dyadic-angle-metrition 1start recursion  at anchor uu 

bisection recursion  111

addition recursion  121212  
 

rationality    [11u2[212

    2n123[[3123 
 

 

 

3.8  Semiconcrete calcule DELTAalpha of biradical numbers 
 

The following introduction to calcules in general is just a sketch, actually it deserves a much more 

thorough treatment, as it goes to the very roots of mathematics and logics. This is done in the forthcoming 

publication (ref. 11)  Opus logico-mathematicus - With the Calculation Criterion of Truth . 
 

So far only abstract calcules  were treated:  abstract calcule pi of planar N-geometry, abstract calcule 

piepsilon of planar E-geometry and abstract calcule deltaalpha of biradical numbers. An abstract calcules 

has basis-individual-constant , basis-function-constant and basis-relation-constant strings as its 

ontological basis. Furthermore there is a set of Axiom strings (that may be infinite using metalingual so-

called Axiom maters). The mathematics of abstract calcules rests on the 'if-then-principle': if there exist 

certain individuals that fulfill the Axiom strings, there are more sentence strings that are true as well; 

they are called THEOREM strings. The existence itself is not claimed, it is simply 'if-then'. Abstract 

calcules are given names that are underlined small Latin words that quote the Greek letters that are used 

for the sort of individuals, e.g. piepsilon for sort  that is chosen for the points of the geometric 

Euclidean plane. An abstract calcules  does not contain individual strings, it just talks about individuals 

by their names (may they exist or not). 
 

Besides abstract calcules there are calcules where the individuals actually are given as individual strings 

of characters, they are called concrete calcules . If it is decidable1) if a string is an individual the calcule 

is called omniconcrete , if not semiconcrete . An omniconcrete calcule  has a sort with capital Greek 

letters, and a correspondent name with underlined all-capital-Latin words. They can be either finite or 

infinite. Examples of finite omniconcrete calcules are finite groups. Simple examples of infinite 

omniconcrete calcules are calcule ALPHAALPHA of power-Robinson decimal natural numbers with 

sort  and calcule RHO of decimal rational numbers with sort . 
 

 

1)  Decidability cannot be treated here in detail. Decidability means that there is a procedure that can be performed by a 

machine for answering a question. This implies that decidability is closely connected with calculable functions. There are 

various aspects of decidability, depending on which kind of question it is applied to. Some examples appear in the following.  
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Semiconcrete calcules have sorts with starting capital Greek letters followed by small Greek letters, they 

are given correspondent names that start with underlined all-capital-Latin words followed by all-small-

Latin-words. Example of a semiconcrete calcules are introduced in the following: calcule DELTAalpha 

with with sort  and calcule PIdelta with with sort  . 
 

For a concrete calcule it also must be decidable if a given string is an individual string 1) or not, e.g. 

12345 is a decimal-natural-number string, 123 :3 is a decimal-rational-number string. If equality of 

individuals means string-equality the calcule is called uniconcrete . The calcule RHO of rational 

numbers only has reduced ratios (that are unique) and is therefore uniconcrete. If one allows for 

unreduced ratios to represent rational number one has the calcule RHORHO of decimal ratio numbers; 

although the individual strings are no longer unique, it is decidable if e.g. the strings 122 :2 and 366 :6 

represent the same number (multiply numerator and denominator crosswise and check for string-

equality). Such a calcule is called multiconcrete.  
 

Concrete calcules are not introduced via Axiom strings, but rather some rules that allow for the 

calculation of functions and relations (via some basic true sentences). Of course one can define an 

abstract calcule alpha of natural numbers and an abstract calcule rho of rational numbers that have Axiom 

strings. And then one can show that e.g. the concrete calcules ALPHA of decimal natural numbers and 

e.g. calcule RHO of decimal rational numbers fulfill the Axiom strings of the related abstract calcules, 

usually one says that they are 'concrete models1)' of the abstract calcule. 
 

Now one can turn to the question if there are omniconcrete calcules that are 'models'2)  of abstract 

geometry calcules. It will turn out that the answer is 'no'. This is closely connected with the question of 

decidability. It is not surprising that there are no models for the abstract calcule pi of planar neutral N-

geometry, that is incomplete , allowing for supplementing it with two kind of parallel Axiom strings. 

But the abstract calcules piepsilon of planar Euclid E-geometry has no omniconcrete models either. 

 

The best one can do is to take refuge to semiconcrete calcules. A semiconcrete calcule has individual 

strings, but it is not decidable in general if a certain string represents an individual or not. In the case of 

planar geometries one can construct individual strings that represent points, however, the admissibility 

of these strings and the equality of points are not decidable.  
 

Semiconcrete calcule DELTAalpha of decimal biradical numbers of sort  comprises the numbers that 

can be constructed starting from u1 by addition  , negativation  , multiplication 

 , reciprocation 10 and biradication 01 . It is a semiconcrete model of 

the abstract calcule deltaalpha of biradical numbers. 

 

Decimal-biradical-number strings (notice the capital initial) are certain decimal numbers built from 0 1 

2 3 4 5 6 8 9 . Cipher 7 is left out for good reasons as will become clear in section 3.9 . Decimal-

biradical-number strings are defined by metalingual recursion that includes TRUTH expressions for 

reciprocation (not to be zero) and biradication (not to be negative). The decimal-digit characters 2 3 4 5 

6 denote addition, multiplication, negativation, reciprocation and biradication resp. , the characters 8 the 

9 play the roles parentheses. One starts with a metadefinition for an auxiliary entity decimal-biradical 

(notice the small initial) that is purely syntactical.  

 

1decimal-biradical1dual-natural-number12

decimal-biradical21 8429 1  8529    1  8629 

3 Decimal-biradical31 82239 1 82339  
 

 

1)  individual strings in Bavarian notation (section 1.3) contain only Arial 12 fonts 0,1,2,3,4,5,6,7,8,9,A,B,C, … 
2)  a calcule or sub calcule is a model of another calcule if there is an isomorphy of the ontological bases and the axioms of 

an abstract calcule or the basic true sentences of a concrete calcule; however this has yet to be expressed precisely.  
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The ontological basis of DELTAalpha can be written as follows: 
 

sort ::     
 

individual-constant ::  n  ¦  u   where ¦ is a metalingual short-notation 'or' 
 

    n0 u1 
 

basis-function-constant ::   ¦    ¦    ¦  10  ¦  1 

basis-relation-constant ::  
 

The defining features are not given in detail: they are basically replacing   by 2 3 4 5 6 8 9 

respectively and using the rules for arithmetics of dual-natural-number strings , reduction of ratios and 

biradication of square roots. 
 

The metaproperty Decimal-biradical-number  1) that is metadefined in a more complicated fashion: 
 

1Decimal-biradical-number1dual-natural-number1

2 Decimal-biradical-number2 1  8429 1  8529  

TRUTH101  8629 TRUTH013

 Decimal-biradical-number31 82239 1 82339  
 

The appearance of TRUTH expressions shows that it is not decidable for a given string if is a Decimal-

biradical-number (which is an alethic 2) and not a syntactic requirement). Notice that the dual-natural-

number strings are the usual 0 1 10 11 100 101 110 111 1000 and so on. 
 

Decimal-biradical-number strings are decimal-biradical strings that fulfill additional TRUTH conditions. 

In a semiconcrete calcule one has an alethic metaproperty for individuals, therefore it is written with a 

capital initial: 

 

Individual::   Decimal-biradical-number 
 

This is not the place to discuss in detail. Some examples of what is a simple TRUTH should be enough: 
        conventional 

8411911       -3 

828610919101     sr(2)+1 

8101385861199910111    5/sr(3) 
 

Arithmetic without biradication can be performed within dual-natural-number strings, this includes 

reduction of ratios of dual-natural-number strings. 
 

10011110101010     ((5+(-3)).2)+2)=6 

 

It is not claimed that the representation of Decimal-biradical-number strings is unique. Two strings can 

represent the same Individual . That is the least problem anyhow, considering the undecidability 

problems. As stated above: undecidability is the essential problem with semiconcrete calcules. But one 

needs reciprocation and biradication for planar geometry and has to accept the unsatisfactory situation.  

 

 

 

 

 

 

 
1)  For better reading one could synonymously replace characters  2 3 4 5 6 8 9 by A M N R S { }  with mnemonic 

for Addition, Multiplication, Negativation, Reciprocation and Square- or biradication.. 
2)  'alethic' refers to Greek  for truth  
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3.9  Semiconcrete calcule PIdelta of planar Descartes E-geometry 

 

Analytic geometry  is the study of geometry using a coordinate system. Mathematical analysis is the 

branch of mathematics dealing with limits and related theories. It was shown above that Euclid geometry 

at first hand has nothing to do with limits. On the other hand proto-line and ortho-line have been 

introduced in section 2.3 already for absolute geometry. And in section 3.6 the path to coordinates for 

Euclid geometry has been cleared. For an E-geometry with coordinates the name Descartes E-geometry 

is chosen. 
 

Semiconcrete calcule PIdelta of decimal planar E-geometry of Descartes-numbers is obtained from 

abstract calcule piepsilon of planar Euclid E-geometry by noticing that the coordinates of section 3.6 are 

biradical numbers. This is where the semiconcrete calcule DELTAalpha of decimal biradical numbers 

of section 3.8 comes into play: one takes Decimal-biradical-number strings to represent the abscissa 

(proto-axis or x-axis), Decimal-biradical-number strings without the origin  preceded by  7 to represent 

the ordinate (ortho-axis or y-axis) and pairs of  Decimal-biradical-number strings without the origin 

separated by  7 to represent the point between the two axis.  

 

This somewhat weird definition is chosen such that one can talk within the calcule about coordinates: 

by means of functions one can map every coordinate to a point on the x-axis and stay within the calcule 

and can produce every pair-number from two  Decimal-biradical-number strings. By including the 

biradical numbers within the calcule PIdelta as abscissa one avoids to talk about two calcules.  

 

Abscissa-number   :: Decimal-biradical-number 
 

1Ordinate-number1

2Decimal-biradical-number2 Truth10172 
 

1Pair-number1

23Decimal-biradical-number2 Truth10

Decimal-biradical-number3 Truth301273 
 

Descartes-number ::  Individual :: Abscissa-number  ¦  Ordinate-number  ¦  Pair-number  

  

The ontological basis of semiconcrete calcule PIdelta immediately shows the connection to abstract 

calcule piepsilon (PIdelta is a  semiconcrete model of piepsilon) : 
 

sort ::   
 

individual-constant  ::  o  ¦  e  ¦  m  ¦  i  ¦  a  ¦  l  ¦  c  ¦  r  ¦  w 
 

basis-function-constant  ::  
 

geometry functions  

appension   1234 ¦  

linisection   1234  ¦ 

isoscition   1231213  
 

coordinate functions 

abscission  value on proto-line  

ordination  value on proto-line  
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The coordinate-functions are easy, they are defined by:  

 

1 Decimal-biradical-number1

TRUTH10111110

1Ordinate-number2TRUTH1,211,22
 

1 Decimal-biradical-number1

TRUTH000101010171

2Ordinate-number2TRUTH121,2  

 

Proto-linity  is defined 1TRUTH1Decimal-biradical-number1 
 

Notice that 1… means 'for all Descartes-number  strings' and 1… means 'there exist a  

Descartes-number  string' as the individual strings of calcule PIdelta are Descartes-number strings. There 

are yet to be defined the functions appension, linisection and isoscition in semiconcrete calcule PIdelta 

. It is obvious how to do it: reduce it to manipulation of biradical numbers. To this end use is made of 

the fact that along the proto-line points are given exactly by Decimal-biradical-number strings . 
 

Using coordinates e.g. 1 and 1of 1 and doing some geometric and algebraic 

manipulations one develops the calculation of the basis-functum strings. Its tedious. 
 

appension  

notice condition 121212 
 

12341212

12121234   case 1

22122

34343434,

22121

34343434

12211234   case 2 

22122

34343434,

22121

34343434

21121234   case 3  

0 

m 

i 

o e 

1 10 {N1} 

f 

{N10} 

,1 

,{N1} 

1,1 

a 

{N1},1 {N10},1 

{N10},{N1} {N1},{N1} 1,{N1} 10,{N1} 

10,1} 

{R10} 

c 

,{1A{N{R{S{10}}}}}  
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22122

34343434,

22121

34343434

21211234   case 4

22122

34343434,

22121

34343434
 

Linisectivity and isoscity are needed for the conditions of linisection and isoscition resp. . They are 

defined by similar procedure as appension by use of coordinates, geometric and algebraic manipulations. 

But it is boring. 

 

linisectivity  

12341234     get busy 
 

isoscity  

123123      get busy 
 

linisection 1234 

12341234… 1234 get busy 
   

isoscition  123 

123123… 123  get busy 
 

However, one must not forget, that one cannot in general effectively do the calculations. The necessary 

conditions cannot be checked: 
 

- number zero equality (for reciprocation and division) 

- number equality 

- nonnegativity (for square root) 

- point equality 

- point equality of pairs of points 

- sectivity of two segments 

- isoscity for intersecting circles of same radius.  

 

The numbers  that are used in the calculations belong to the semiconcrete calcule DELTAalpha and  that 

is where the undecidability and incalculability in general enters. 
 

 

Now one can modify the metatheorem of section 3.7 for the two semiconcrete calcules PIdelta of planar 

Descartes geometry and DELTAalpha of ordered corpus of decimal biradical numbers:  

 

biradical numbers can be semiconstructed geometrically 
 

There is no decision procedure for equality of biradical numbers! 
 

There is no decision procedure for vanity (equal zero) of biradical numbers! 
 

There is no decision procedure for positivity of biradical numbers! 
 

There is no decision procedure for equality of points  in planar Descartes E-geometry.! 
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4. Planar L-geometry 

4.1  Ontological basis of calcule pilambda of planar Lobachevsky L-geometry 
 

The abstract calcule pilambda of  Двухмерная Л-Геометрия Лобачевского :is obtained from 

abstract calcule pi with the same ontological basis, just replace  by . 
 

sort      Lobachevsky-point, Лобачевский-точка 
 

However, the introduction of  the Multiple-parallel-axiom  changes the character of the abstract calcule 

completely. Whereas abstract calcule pi contains limbHOOD strings, i. e. sentence strings, that are neither 

TRUTH or FALSEHOOD strings, abstract calcule pilambda is a complete calcule like piepsilon., which 

means that every sentence is either a TRUTH or a FALSEHOOD string (for more section 4.9). It will turn 

out that one has to add one more Axiom . Another essential difference will be the way that one expresses 

cissectivity (and thence parallelity) without the use of entitor character as a mere junctive formula string, 

see section 4.3 . This was true in Euclid E-geometry too, although with different junctive formula strings.  
 

 

 

4.2  Axioms of planar Lobachevsky L-geometry and inductivity 
 

From calcule pi of N-geometry one takes Axiom strings A1 to A20 and A22 to A25 One Multiple-parallel-

axiom  A21l and - surprisingly - another one  Proto-length-axiom A26 . The existence of a parallel 

through a point with respect to a pair of points is a THEOREM of N-geometry. In E-geometry Axiom A21e 

requests that it is unique. There is more than one parallel in planar L-geometry. Negating A21e gives the 

Multiple-parallel-axiom A21l (character l for Lobachevsky) : 
 

A21l multiple parallel  1234

 1234123451235345
 

One has yet to prove the THEOREM of L-geometry that there are many, actually infinitely many, parallels 

through a point with respect to a pair of points. 
 

In addition to the nontriviality Axiom A25 one has to put forward another Axiom hat requires special 

features for the proto-pair oe, the so-called Proto-octomidial-axiom This procedure is characteristic 

for Lobachevsky planar geometry, it cannot be applied in Euclid planar geometry. The simplest choice 

is the requirement that the proto-length produces the octomidial equilateral triangle. The relevance and 

the consequence of A26 is discussed in section 4.9 . 
 

A26 proto-octomidial equilateral triangle

 ooooooooeee 

 

Just as in E-geometry an Axiom mater is needed to guarantee completeness: 
 

Axiom mater of inductivity 1
 

 sentence111 2 1 3 1 3 

TRUTH11o11e1234 

111211311412

111234

11121131141234

1112341112113

114123411123411
 

It means: start with proto-pair oe and generate all points from it by appension, linisection and 

circulition.   
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4.3  Fundamental extrafuncta 
 

As opposed to E-geometry in L-geometry there is a whole spectrum of parallel lines thru a point 3 

relative to a line given by 12 . The point 3 can be either on the protive or the contrive side of the 

12 . The points,  defining the parallel lines, have the same or the opposite direction, syn- or anti- 

.Between the two limiting syn- and anti-horo- cases there are the syn- and anti-hyper- cases resp. . 

Relative to point 3 one can  identify ortho-hyper- (orthogonal) in-hyper- (increasing) and de-hyper- 

(decreasing); however, these classifications are only valid with respect to the point 3 as every hyper-

parallel has a point with respect to which it is an ortho-hyper-parallel. For a thorough classification of 

two pairs of points  12 an 34 with respect to parallelity of the second one to the first one there 

are 20 cases of parallelity (besides syn- and anti-line-equality). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

extra-function-constant strings in connection with the special kind of parallelity in L-geometry,  
  

pro-horo-parallel-angulation  12
contra-horo-parallel-angulation  12
syn-horo-parallelation  123

anti-horo-parallelation  123
syn-angle-horo-parallelation  123
anti-angle-horo-parallelation  123

 

Construction of horo-parallel-angle1) , determine an angle from a distance, using Legendre-quadrates 

1235 and 12810  
 

pro-horo-parallel-angulation 
 

12  triangle 126 

     

312 

412

5143

61235 
 

126

121211212
 

contra-horo-parallel-angulation 
 

12  triangle 1211 

 

1211

121212112 

 

1) the usual 'parallel-angle' neglects the fact that there are two directions for horo-parallels  

1 2 
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4c in-syn-hyper- 
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trans- 
cissectivity 
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4d anti-hyper 
 

4b anti-horo 

trans- 

cis- 

cis- cis- 
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The horo-parallel-angles at 1 between 2 and 612 and 1112 are used as 

limits for lo-cissectivity1) and lo-parallelity  conditions. The important fact is 

that there is no entitor as compared to cissectivity and parallelity of N-geometry. 
 

The inverse problem is syn-angle-horo-parallelation  123and anti-angle-

horo-parallelation : given an angle by a triangle, find the point 4 on line 1 2 with 

distance  1  4 that has this angle as horo-parallel-angle. 
 

Construction of horo-parallel through a point relative to a line  

 

syn-horo-parallelation 

123 
 

 

4123

534 

634 

73123356

83213356
 

1237

3123331233123 
 

anti-horo-parallelation 

123 
 

1238

3213331233123 
 

where care is taken of both cases, pro- and contra- . 
 

extra-relation-constant strings in connection with parallelity and linisectivity in pilambda are introduced. 

As it was the case in E-geometry no entitor character appears; 'lo' from 'Lobachevsky' .  
 

lo-cissectivity  

lo-linisectivity  lo-cissectivity or transsectivity

lo-parallelity  poly-parallelity or line-equality

poly-parallelity  horo- or hyper-parallelity

   

hyper-parallelity  horo-parallelity 
   

syn-hyper-parallelity  syn-horo-parallelity 
anti-hyper-parallelity  anti-horo-parallelity 
   

pro-hyper-parallelity  pro-horo-parallelity 
contra-hyper-parallelity  contra-horo-parallelity 
   

syn-pro-hyper-parallelity  syn-pro-horo-parallelity 
anti-pro-hyper-parallelity  anti-pro-horo-parallelity 
syn-contra-hyper-parallelity  syn-contra-horo-parallelity 

anti-contra-hyper-parallelity  anti-contra-horo-parallelity 
 

syn-horo-parallelity  1234 34123 

anti-horo-parallelity  1234 34123 

horo-parallelity  1234  12341234
 
1) the prefix lo- is attached to avoid confusions with functions of E-geometry where necessary  

1 2 

3 

5  7 

4 

6  8 

example case pro- 
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syn-hyper-parallelity 1234 between the horo-parallels, same directions

    3123431234 

    3123431234 
 

anti-hyper-parallelity 1234 between the horo-parallels, opposing directions

    3123431234 

    3123431234 
 

hyper-parallelity  123412341234 

poly-parallelity  123412341234 

lo-parallelity   123412341234
 

lo-cissectivity   1234

    123412341234 
 

lo-linisectivity  1234

    12341234 
 

Although this quaternary relation is somewhat lengthy when it is expanded in order to express it by 

appension, circulition, linisection and decision it serves the desired purpose: there is no entitor involved, 

junctive logic only! This means one could start with lo-cissectivity right from the beginning in the 

ontological base and the Axiom strings. Just as one could replace cissectivity by junctive eu-cissectivity 

in E-geometry. This again shows another strong distinction between the two geometries. 

 

 

 

4.4  Right and light triangles, polygons, triangulations 
 

A triangle is called light if the sum of two angles equals the third angle (the light angle), it has light-

angularity. In E-geometry light is right, in L-geometry light and right is never the same. 

The two equal angles of a liso-triangle are each less than a halfright angle. 
 

123 123123

   232121313121 
 

A light isoscelic triangle is called liso-triangle, it has liso-angularity. 
 

123 123123
 

The following classifications of quadrangles are meaningful in L-geometry:  
 

A quadrilateral is a quadrangle with at least two right angles 

 Lambert-quadrangularity 3 right angles (Spitzeck)    

 Saccheri- quadrangularity 2 right angles adjacent    

 Bolyai- quadrangularity 2 right angles opposite    
 

A quadrate is a quadrisymmetrical with at least 2 equal sides 

 Lambert-quadrity  3 right angles with 2 pairs of equal sides  

 Saccheri-quadrity  2 right angles adjacent with 3 equal sides  

 Bolyai-quadrity  2 right angles opposite with 4 equal sides  

 Gauss-quadrity  4 equal angles, 4 equal sides    
 

A Gauss-quadrate is obtained by a liso-triangle combined with itself along the great side.   



version 1.0 Geometries of O 63 

polygons specified by angles only: 

three angles in triangularity 

base angle and apex angle in isoscelic-triangularity 

angle in equilateral-triangularity 

angle in liso-triangularity 

angle in Lambert-quadrity 

angle in Saccheri-quadrity 

angle in Bolyai-quadrity 

angle in Gauss-quadrity 
 

In section 4.5 the concept of Lobachevsky area will be introduced for triangles and quadrangles. 
 

ordering equivalence relations 

lo-triangle-area-equality  

lo-triangle-area-minority  

lo-tri-quadrangle-area-equality  

lo-tri-quadrangle-area-minority  

lo-quadrangle-area-equality   

lo-quadrangle-area-minority   
 

Special constructions of triangles from sides and angles: 
 

side-angle-angle-triangulation   which if trivial in E-geometry   

See 'Aufgabe 14' Perron, page 47. Too lazy to translate into my language. 
 

angle-right-triangulation, riso-triangulation   
 

412 

5123 

6143

761 

81615 

91715 

106789 

11110 

12101113123 
 

triangle 10112 is right isoscelic , the auxiliary triangle 156 is not isoscelic. 

 

Riso-triangulation is a special case of 

angle-angle-right-triangulation   
 

See 'Aufgabe 11' Perron, page 46. Too lazy to translate into my language. 
 

Angle-angle-right-triangulation is a special case of the Liebmann-functions 

angle-angle-angle-base-triangulation   

angle-angle-angle-tip-triangulation   
 

which were put forward for the first time by Liebmann - it  is a bit complicated. See 'Aufgabe 16' Perron, 

page 47. Again too lazy to translate into my language. Together with 1 the tip-function and the base-

function produce a protive triangle with the three given angles in the protive sense: 
 

1123456789123456789  
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4.5  Metering, angles, areas 
 

Angles could be treated perfectly in N-geometry with the outstanding features of angle-congruity, angle-

minority, triangle-combination, and cali-meter-angulation. Angles reach from zero-angle to less than 

full-angle. Right, halfright, straight, acute, obtuse and oblique angles can be identified. Therefore 

nothing really new happens with respect to angle metering in calcule pilambda of planar L-geometry.  
 

Of course, the proto-pair oe that is essential in cali-angle-metrition  as obtained from 

N-geometry , as reference is taken as oe . It is only different in so far from the proto-

pair oe of calcule piepsilon of planar E-geometry as it cannot be taken as a unit for proto-

multiplication or proto-reciprocation of E-geometry: there is no proto-multiplication or -reciprocation in 

L-geometry that combines with proto-addition (as in the case of rational numbers) . Proto-addition 

 and proto-angle-addition , however, can be directly transferred from N-geometry. 
 

In N-geometry it is shown that the triangle-combination of three angles is less or equal to the straight 

angle. In E-geometry the equality holds, whereas in L-geometry the minority applies. One can therefore 

ask for the difference between the sum of angles of a triangle and the straight angle constructed with 1) 

angle-summation1) 12and angle-defection1)  12 . 
 

12312 113313213122

    1133132131213 
 

12312 112123
 

For angle-defection absolute-triangle-combination suffices, no triangle-combination is necessary as one 

does not exceed the straight angle. One combines the three angles and reflects the point at the 

perpendicular in the vertex. The angle-summation is given by the isosceles triangle 

12123, the angle-defect is given by the isosceles triangle 12123 . 
 

It took some explaining in  section 3.4 to introduce the concept of  area in E-geometry. It turned out that 

using the concept of height of a triangle one could define triangle-area-equality and 

triangle-area-minority  as well as triangle-area combination 

 so that all the usual features of intuitive geometry are fulfilled, but without 

extending the ontological basis. 
 

A corresponding concept can be introduced in L-geometry. However, it turns out that the sum of angles 

of a triangle is the relevant feature that is used for the definition of lo-triangle-area-equality 

and lo-triangle-area-minority . But it is closer to our 

intuition to use the angle-defect of a triangle, as it increases if an area is combined with another. 

Absolute-angle-congruity and -minority are applied: 

 

123456 1245

     1212345456 
 

123456 1245

     1212345456 
 

For lo-triangle-area-combination one has to keep in mind that there is a limit 

to triangle area, as the  combined angle must not exceed the straight angle. I am too lazy to express the 

condition explicitly. It gives the point of an isosceles triangle with base 12 that consists of two 

triangles that each has the area of one of the two combined triangles.
 

1234561123214456 
 

1) no corresponding functions have been included in E-geometry as they are trivially constant pi and 0 respectively.  
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The interpretation of angle-defection for area-comparing of triangles is justified by the following. Firstly 

one defines levification of a triangle 12 that produces a light triangle with the same 

base and the same angle sum. 
 

413 

523 

6451

7452 

8453 

123916
 

THEOREM 12123    light triangle

  12312123 same angle-sum 

 

THEOREM 1212123 and 123  

  can be split into congruent triangles as 
 

Proof: with triangle congruence and angle congruence 
 

348146  358257  348146 

358257  381627 
 

THEOREM triangles with same base and angle-sum give rise to the same light triangle
 

  123124123124 
 

THEOREM if triangles 123 and 456 have the same angle-sum their corresponding

  light triangles (obtained by levification) can be split into congruent triangles  

 

Proof:  the two light triangles, obtained by levification, share the common light angle and can 

thus   be put on top of each other. One then can reason with congruent triangles. 

 

An that is the motivation, why and .are taken as lo-triangle-

area-equality and lo-triangle-area-minority. 
 

 

With cali-metrition  one gets the function cali-angle-defect-metrition  that 

produces a point on the proto-line between o and e . It could also be called cali-triangle-area-

metrition . Thereby one gets a method for metering areas within calcule pilambda , no numbers are 

involved. Instead of numbers one uses the points  of the segment oe on the proto-line. 

 

12312123 
 

Then there are the following THEOREM strings that use equality and proto-minority Defined along the 

proto-line, defined by proto-linity : 
 

123456 1245123456

     123456
 

123456 1245123456

     123456
 

And all is done within L-geometry, not leaving the ontological basis. No new entities 'angle' or 'area' as 

a 'point set of a triangle' have to be introduced, no numbers are necessary for metering, a fortiori no 'real 

numbers'.   
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4.6  Planar felix-functions of the Euclid E-geometry Klein-model 
 

In section 2.4 extra-relation-constant cali-circlity   (for the interior of the cali-circle) has already 

been defined for the abstract calcule pi . Now it is shown that one can set up an abstract model of 

pilambda using the cali-circle of calcule piepsilon . This corresponds to what is usually known as beer-

mat-geometry (in German 'Bierdeckel-Geometrie' ) that was invented by Felix Klein. However, now it 

is based on our rigorous approach. By this method one constructs an abstract model for an abstract 

calcule: a subcalcule of piepsilon is a model of calcule pilambda , meaning that there is an isomorphy 

in the following precise sense, where the new functa of piepsilon are yet to be defined. For the moment 

it will be called the Felix-model, the reason for this naming will become clear in section 4.7 . Notice that 

these planar functions will only be defined in some parts of the cali-circle, given by property  that 

is also yet to be defined: 
 

      extra-function-constant with asteric  
 

 corresponds to  felix-appension

 corresponds to   felix-linisection

 corresponds to    felix-circulition

  corresponds to    felix-entiration
 

      extra-relation-constant with a hash  
 

  corresponds to    felix-appensity

  corresponds to  felix-linisectivity

 corresponds to   felix-circulity

point of pilambda corresponds to    cali-circlity
 

1   corresponds to  11 

1   corresponds to  11 
 

o   corresponds to o

e   corresponds to ke
 

One can express this exactly using metalanguage Mencish for the two metacalcules  piepsilon and  

pilambda  for the two calcules  piepsilon and  pilambda resp. . The technique of metalanguage is not  

treated in this publication. 
 

The isomorphy is given by two metafunctions  felix  and  xileffelix1 where the 

metaproperty felixthat appears in the condition of the partial metafunction xilefis defined 

as follows: felix is valid for those strings of piepsilon that contain only the four primary felix-

functions, where all secondary functions that have been constructed by composition have to be expanded 

and all relations  have to be replaced using proper formula strings, where only the four primary felix-

functions appear. 
 

The metafunctions felix  ,  xilef and the metaproperty felixcan be obtained  by a 

limited primitive recursion with respect to the strings of piepsilon and  pilambda . The following 

syntactic and semantic metatheorems hold: 

 

1 sentence1sentencefelix1  

1 felix1 sentence1sentencexilef1  
 

1 TRUTH1TRUTHfelix1  

1 felix1 TRUTH1TRUTHxilef1  
 

But it is not the place to go deeper into metalanguage use.  
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Together with the definition of planar felix-functions (marked with an asteric inside the cali-circle 

some felix-relations (marked with a hash  ) have to be introduced as well. Warning: the full expansion 

of some expressions can get very lengthy! 
 

felix-appensity [1234]1234

   121234 
 

Cross-ratios meter 'Lobachevsky distances', where addition of distances corresponds to multiplication 

of cross-ratios, one being the neutral element. Keep this in mind as a heuristic guide-line. In section 3.6 

the necessary preparations were already done. In the definition of felix-appension one considers two 

cross-ratios and requests that they are equal. It will be made use of cali-cross-

ration12and cali-cross-metrition12 of section 3.6 . 
 

felix-appension 1234

Determine the point 15 on line 12 so that 215 has the same cross-ratio as 34  

 

512oe

612oe

734oe    next to 3 

834oe    next to4 

973     for cali-pair-metrition 3 4 on proto-line 

1074 

1178 

1252     for cali-pair-metrition 2 15 on proto-line 

13515     where15 is the desired point on line thru 12 

1456 
 

13 is determined from the equality of two following cross-ratios 1617 (the equation can be solved) 

161011991110 for 34 

17131412121413 for 215 

 

solution by simple arithmetics:1312141612161412 

 

Felix-appension result 15 is given by Euclidean appension of o13 to 12 

 

felix-appension 1234

   12o12141612161412 

 

If you wish you can successively insert for 16 down to 5 , however, it is getting lengthy! 
 

Felix-appension induces secondary extra-relation felix-pair-congruity1212 and secondary 

extra-function felix-pair-doublition 12 .


123412341234

   1212121234


12121212


It is much simpler to define felix-linisection, as - heuristically speaking - straight lines in L-geometry 

correspond to straight lines in the Felix-model. It is only necessary to slightly modify the conditions. For 

cissectivity one has to make sure that the result lies inside the cali-circle  
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felix-transsectivity 12341234

   1234 
 

felix-cissectivity 12341234

   12341234 
 

felix-linisectivity 123412341234
 

felix-linisection 123412341234 
 

Notice that felix-linisection has been defined before felix-circulition, whereas in top-down axiomatics 

it was the other way round, circulition before linisection.  

 

 

For felix-circulition  one firstly has to transpose the condition using felix-appension 

by simply adding an asteric to the corresponding definitions of section 2.1 and 3.1 : 

 

felix-tria-circulity  1234
 

1234121324

1211211324

1221211211324

1224121121132112

1131224

211321212224121222

42113
 

felix-lina-circulity 1234

1234

12121122413

12242112113

21131212224


felix-circulity 1234

  12341234121314 


felix-isoscition  is defined accordingly to produce an isosceles triangle.


A circle of pilambda corresponds to an ellipse in the E-geometry Felix-model. Firstly such an ellipse is 

described by an equation for its biradical 'coordinates' of similar to the method that was used for felix-

appension. Two circles lead to two ellipses that intersect in two points. The corresponding two quadratic 

equations are solved in biradical numbers, which immediately give rise to the protive solution. 


The simplest case to which the general problem can be transformed is a Euclidean circle and a shifted 

flat ellipse; from this idea one shows that there can only be two solutions, one protive and one contrive.  



Find the ellipse-equation for a circle of felix-pair-congruent points 3 with center 1 and radius 12  

i.e. 1213 . Without restriction 1 and 2 are chosen on the proto-segment  

o12e . This follows immediately from the transformations given by automorphous 

collineations of the unit circle that map the unit circle to itself and  that map straight lines inside the unit 

circle to straight lines, where the cross-ratio of point pairs is conserved.  
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For convenience conventional notation is used for the moment. The start is a circle with radius r<1 

around  o , which is then translated to a circle with center at c<1 on o e ; u,v and x,y are coordinate 

pairs, that are mapped onto each other.


u2+v2=r2
     circle 

x=(c+u)/(1+uc)    transformation (a simple automorphous collineation) 

y=(v(1+c2) sr(1+c2))/(1+uc)   (-1,0) and (1,0) remain fix,  (0,1)moved to  (c, sr(1+c2)))


u=(x-c)/(1-xc)     reversed

v=y/((1-xc) sr(1+c2)) 


((x-c)/(1-xc))2+(y/((1-xc) sr(1+c2)))2=r2
 by insertion 

(x-c)2+y2/(1+c2)=r2(1-xc)2   immediately identified as an ellipse symmetric to abscissa 

(x-c)2-r2(1-xc)2+y2/(1+c2)=0   bringing ellipse equation into normal form: 


x2(1-r2c2)+2xc(r2-1)+c2-r2+y2/(1+c2)=0

x2(1-r2)(1+c2)+2xc(r2-1)+c2-r2+y2/(1+c2)=0

x2-2xc/(1+c2)+(c2-r2)/((1-r2)(1+c2))+y2/((1+c2)2(1-r2))=0

(x-sr(c/(1+c2)))2+(c2-r2-c(1-r2))/((1-r2)(1+c2))+y2/((1+c2)2(1-r2))=0

(x-sr(c/(1+c2)))2+y2/((1+c2)2(1-r2))=(r2+c(1-c-r2))/((1-r2)(1+c2))


center of ellipse on abscissa   m=sr(c/(1+c2))

major axis     a=sr(r2+c(1-c-r2))/((1-r2)(1+c2)))

minor axis     b=sr((((1+c2)2(1-r2))(r2+c(1-c-r2)))/((1-r2)(1+c2)))


For closing in on intersecting this ellipse with a circle around the origin with radius radius s<1 .

x2+y2=s2
  ((x-m)/a)2+(y/b)2=1 



It is getting a bit boring to solve the two equations for the two solutions x1 y1 and x2 y2 - and - by the way 

to show that there are at most two solutions. But it is clear that the solutions involve only biradical 

numbers, as they are obtained by solving a quadratic equation. With the proto-functions of sections 2.4 

and 3.6 can derive the function felix-circulition  if one also makes use of the 

automorphous collineations. The essential calculation is done in section 4.7 when determining felix-

jacition .
 

For the determination of  the klein-proto-end ke the octimidial equilateral triangle o12is 

constructed where the cross-ratio (h+v)/(h-v) of  12   equals the cross-ratio (a+1)/(a-1) of o1 

and o2 , starting with parameter a that is to be determined by the octimidial condition. 
 

u=a.sr(2+sr(2))/2 with quarterright angle for o13 

v=a.sr(2-sr(2))/2 

h=sr(1-u2) sr(1-a2(2+sr(2))/4) 
 

inserting h and v 

(1+a)/(1-a)=(sr(1-a2(2+sr(2))/4)+a.(2-sr(2))/2)/ 

(sr(1-a2(2+sr(2))/4)-a.sr(2-sr(2))/2) 
 

quadratic equation for a2 : 

a4-a2(2sr(2)-1)+(2sr(2)-2)=0 

solution  a2=2sr(2)-2 

 

giving distance  a=sr(2sr(2)-2) =0,910… 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

translated to proper form with proto-functions: 
 

ke=ee 

  

o 

1         (u,-v) 

2        (u,v) 

B       (u,h) 

a  
u

o 

A       (u,-h) 

3         (u,0) 
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4.7  Linic felix-functions as proto-functions in the cali-circle 

 

In sections 2.4 and 3.6 the so-called proto-functions have been introduced that were only defined on the 

proto-line given by property proto-linityand resp. . The proto-linity has to be mapped by 

the isomorphy of section 4.6 accordingly. It is then given by property proto-diametrity  . Just as 

appension, linisection and isoscelition induced proto-functions both in N-geometry and E-geometry, one 

can find felix-functions starting from appension, linisection and circulation in L-geometry (they are 

given the new names in order not to be confused with normal arithmetic functions): 

 
   

primary   
   

felix-annition   12 
felix-menition  1 

felix-evition  123

1223e
felix-riation ( 12 
felix-clarition ( 21                    condition implies proto-diametrity   
   

felix-jacition  123123

231312 

secondary   
   

felix-mariation   1 
felix-matition  12 

felix-luisition   1 
   

felix-carlition  12conditions implies proto-diametrity   
felix-rudition  1 

felix-hansition  1 
felix-petrition  12 
felix-franition  1 
   

 

They are defined with the use of proto-functions of section 3.6  - that's the beauty! 

 

felix-annition 121212e12

felix-proto-addition conventional    (x+y)/(1+xy)
 

felix-menition  111 

felix-proto-negativation conventional    -x
 

felix-evition  1232312e

felix-proto-proportion 12323oo1223

   conventional    xy/(y+z) with y+z not 0 and sr(x2+y2)<1 
 

felix-riation  12(12

felix-proto-pro-hypotion (1((212

felix-pythagoras-a conventional    sr(x2+y2-x2y2)
 

felix-clarition 1212

felix-proto-pro-cathetion (1(2e(2

felix-pythagoras-b conventional    sr((x2-y2)/(1-y2)) 

 

felix-jacition  it could also be called felix-proto-tripedition, determining the foot (pes), 

where the perpendicular from circulation point 4 of the triangle o 1 4 hits the proto-radius.  
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Using felix-jacition and felix-riation one can also determine the distance from the foot to 4 (that can 

be metered by proto-ortho-metrition) and therefore do the complete construction within the cali-circle. 
 

For shortness and better understanding conventional notation with Times Roman italics is used for the 

moment, replacing the Euclidean distances o,1 , o,2 and o,3 by a , b and c with condition 

0<=a<1 , 0<=b<1 and 0<=c<1 . The circulity condition is constructed as follows. Take the cross-ratios 

a=(a+1)/(a-1) , b=(b+1)/(b-1) and c=(c+1)/(c-1) and express triangle-condition c<=a b , b<=c aand 

a<=b c .
 

 

1:  (a,0) 

4:  (u,v) 

A:  (p,-q)    0<p  0<q 

B:  (r,s) 
 

a=01 

b=02 

c=03 
 

for cross-ratio: use projection on ortho-axis 

A4=q+v      

B4=s-v 

A1=q 

B1=s 

 

cross ratio equality: 

c=(1+c)/(1-c)= 

(A4.B1)/(A1.B4)= 

s(q+v)/(q(s-v)) 
 

 

u2+v2=b2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Determine s and q with  0<q<=1 and 0<s<=1  from a and a coordinate pair u,v with 0<v  and u2+v2<1 

by intersection of unit circle x2+y2=1 and straight line thru 14  x=y(u-a)/v+a 

 

intersection of circle u2+v2=b2 and straight line to determine u 

by equating cross ratios  c=(1+c)/(1-c) and cross ratio 14 given by (A4.B1)/(A1.B4)=s(q+v)/(q(s-v)) 

 

(y(u-a)/v+a)2+y2=1  (y(u-a)+av)2+v2y2=v2  y2(v2+(a-u)2)-2y(a-u)av+v2(a2-1)=0 

 

s,-q=((a-u)av  +,-  sr(((a-u)av)2+(v2+(a-u)2)(v2(1-a2))))/(v2+(a-u)2)= 

v((a-u)a  +,-  sr((1-a2)v2+(a-u)2))/(v2+(a-u)2) 

s=v((a-u)a +sr((1-a2)v2+(a-u)2))/(v2+(a-u)2) 

q=v(-(a-u)a +sr((1-a2)v2+(a-u)2))/(v2+(a-u)2) 

 

s+q=2v.sr((1-a2)v2+(a-u)2))/(v2+(a-u)2) 

s-q=2v((a-u)a/(v2+(a-u)2) 

qs=v2((1-a2)v2+(a-u)2-(a-u)2a2)/(v2+(a-u)2)2=v2(1-a2)/(v2+(a-u)2)= 

 

using the cross-ratio equality 

(1+c)q(s-v)=(1-c)s(q+v) 

(1+c)(qs-qv)=(1-c)(qs+sv)  

2cqs-v(q+s)+cv(s-q)=0 

2c(v2(1-a2)/(v2+(a-u)2))-v(2v.sr((1-a2)v2+(a-u)2))/(v2+(a-u)2))+cv(2v((a-u)a/(v2+(a-u)2))=0 

c(1-a2)-sr((1-a2)v2+(a-u)2))+ac(a-u)=0 

  

5  1   2  3 

 u  a    b  c  

0 

A  (p,-q) 

4 (u,v) 

B (r,s) 

6 

v 
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eliminating square root  
 

c((1-a2)+a(a-u))2=(1-a2)(b2-u2)+(a-u)2 

c2((1-a2)2+a2(a-u)2+2a(1-a2)(a-u))=(1-a2)(b2-u2)+(a-u)2 

c2(1+a4-2a2+a4+u2a2-2a3u+2a2-2au-2a4+2a3u)=(1-a2)(b2-u2)+(a-u)2
 

 

Therefore one has the quadratic equation a2(1-c2)u2-2a(1-c2)u-c2+b2-a2b2=0 

 

with solution:  u1,2=(a(1-c2) +- sr((a2(1-c2)2-a2(1-c2)(b2-a2b2)))/(a2(1-c2)) 
 

With a little rearrangement one gets the desired expression in conventional form u(a,b,c) where the 

negative sign has to be taken, so that u may become negative: 
 

u=(1-sr((1-b2(1-a2))/(1-c2)))/a if not a=0   and u=0 for a=0 
 

Translate this conventional form back into the proper language, also taking care of case  o : 
 

felix-jacition   123123231

   312123 

 

1oo((e((e(2(e(1(e(11 
 

Now one can write down the secondary felix-functions: 
 

felix-mariation 1111 11e11 

felix-proto-duplication conventional    2x/(1+x2)
 

felix- matition 1111 12

felix-proto-subtraction conventional    (x-y)/(1-xy)
 

By putting 123 one gets immediately from felix-jacition: 
 

felix-luisition  11ee11

felix-proto-bisection conventional  (1-sr(1-x2))/x  if not x=0   and 0 for x=0 
 

Via proportition a distance of Euclid E-geometry can be cut in every proportion of two 

numbers. This is different in Lobachevsky L-geometry. The only possible intersections are dyadic, i.e. 

multiples of successive dichotomitions. If trisection of a distance would be possible in L-geometry the 

following equation would have biradical solutions:  
 

trisection a=(3t+t3)/(1+3t2)  

 

However, a solution of cubic equation  t3-3at2+3t-a=0  is not possible with biradical numbers! Trisection 

of distances is not possible in  L-geometry! Otherwise one could transfer the result of felix-functions 

back to Euclid E-geometry as a solution for a cubic equation. This leads to: 
 

THEOREM only dichotomition-produced intersections of segments (using entiration) 

 

12311312

1211311332113113

1232 



version 1.0 Geometries of O 73 

E.g. there is no trichotomition.  
 

Just as for E-geometry the proto-angle-functions of section 2.7 could be directly transferred to L-

geometry as they have been defined on the proto-cycle-segment in the first place. However, when 

mapping Lobachevsky to the cali-circle one has to notice, that the functions involved have to be replaced 

by their felix-counterparts and that the proto-end e is mapped to a value on the proto-radius ke .  

For proto-angle-bisection 1oeo1 one needed cali-pro-angulation  , 

dichotomition  and cali-angle-metrition e and the two proto-points oe . As 

the proto-origin  o stays the same all one has to do is to replace  e  by  ke . 
 

felix-franition  11okeo1
felix-proto-angle-bisection 
 

felix-rudition  11okeoke1
felix-proto-angle-duplication 
 

felix-carlition  12

felix-proto-angle-addition okeokeoke1oke2
 

felix-hansition 11okeoke1
felix -proto-angle-negativation 
 

felix-petrition  121212
felix-proto-angle-subtraction 
 

Triangle-dichotomition  1213 of N-geometry allows for dividing an angle into two 

equal parts, one could not do other divisions in Euclid E-geometry, nor can one do better in Lobachevsky 

L-geometry. Applied to proto-functions this means that there is only dyadic intersection of angles. This 

means that there is only felix-franition for intersection of angle-meters.  
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4.8  Felix-is-not-Klein-conjecture 

 

All necessary planar felix-functions (section 4.7) have been defined in the cali-circle and all 

necessary linic felix-functions  (section 4.8) have been defined inside the proto-diameter  of E-

geometry. One could stop now and claim that this is the desired isomorphic representation of planar 

Lobachevsky L-geometry in planar Euclid E-geometry, as all the functa have been defined explicitly 

and there are one-to-one corresponding Axiom strings of L-geometry and THEOREM strings of E-

geometry. 
 

However, there is a catch: the Axiom mater of inductivity of section 4.2 which requests that all points 

that can be constructed from the proto-ende by means of the three functions appension, linisection 

and circulition belong to the plane and only those points. What does that mean for the Felix-model ?  
 

The cali-circle looked upon in the semiconcrete calcule PIdelta of decimal planar Descartes E-geometry 

(section 3.9) consists of pairs of biradical numbers of semiconcrete calcule DELTAalpha . It is easier to 

look at the proto-diameter of E-geometry whose points from m to e (exclusive limits) correspond 

bijectively to biradical numbers conventionally denoted by -1<x<1 or in the language of section 3.9 

with the somewhat strange looking formula 8419111 . 
 

But this would mean that all biradical numbers between  -1 and 1 are included in the isomorphic model. 

This would include the following examples: 
 

- the simplest case rational number 1/2 

- all rational numbers x  with  -1<x<1 

 

If one looks at the primary six linic felix-functions annition  , menition , evition 

, jacition , clarition ( and riation (and the starting point 

ke one gets very strong doubts that they all biradical points can be constructed from them. The 

constructible points on calcule piepsilon are called Klein-circle-points with klein-circlity , 

Klein-diameter-points with klein-diametrity and the corresponding numbers in calcule 

deltaalpha Klein-numbers 1) with the property klein-diametrity  . The necessary recursive 1) 

definitions:  
 

klein-circlity from planar felix-functions 

 

1

1ke22334455

23234512345

234512345

234512345 

 

and very simple by conjunction klein-diametrity 111or alternatively 

from linic felix-functions which has the advantage that it can be directly transferred to calcule deltaalpha: 

 

11ke2212

3312312332123

4412o1234

123123231312

1234 

 
1)  'Klein-biradical number' may lead to the pun in German 'kleine biradikale Zahl' in German 'klein' means 'small' ; it also 

nice to talk about 'Klein-Pythagoras' or 'kleiner Pythagoras' i.e. 'small Pythagoras' 
2)  recursive definitions of relations do not contradict our self-imposed rule on defining functions by composition only   
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Corresponding to Klein-number as special biradical numbers with  u1  and  1u 
 

11ke2212

3312312332123

4412o1234

123123231312

1234 

 

The three primary planar and the six primary linic klein-functions of piepsilon are simply obtained by 

restricting the corresponding felix-functions to klein-circlity rather than cali-circlity. Secondary klein-

functions can be introduced accordingly. With 1234 one 

has together with the conditions of the felix-functions 

 

klein-appension 12341234

klein-linisection 12341234

klein-circulation 12341234 

 

klein-annition  1212

klein-menation 11

klein-evition  12123 

klein-jacition  12123

klein-clarition  (12(12

klein-riation  (12(12 
 

The six primary linic klein-functions of deltaalpha correspond to the linic felix-functions of section 4.7 

with equal construction from addition, negativation, multiplication, division and biradication. Secondary 

functions can be introduced accordingly.  

 

klein-annition  1212

klein-menation 11

klein-evition  12112312n 

klein-riation  (1212 

klein-clarition  (1221   condition implies 

klein-jacition  1212312

   3123231312
 

It is straightforward to supplement the proto-relations of sections 2.4 by felix-properties and klein-

properties by restricting them to the proto-diameter or the klein-diameter: 
 

felix klein  proto 

  -diametrity 
    

  -minority 

  -equal-minority 

  -positivity 

  -nonnegativity 

  -negativity 

  -nonpositivity 
    

  -cyclicity 

  -dyadicity 

  -dyadic-cyclicity 
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In section 3.8 the semiconcrete calcule DELTAalpha of Decimal-biradical-number strings were defined 

as the Individual strings. On this basis the semiconcrete calcule PIdelta of decimal planar Descartes E-

geometry was introduced in section 3.9, with Descartes-point as Individual strings. Descartes E-geometry 

constituted a model of Euclid E-geometry; a semiconcrete calcule as a model for an abstract calcule. 
 

In the same way one could introduce two calcules with regard to Lobachevsky L-geometry via the ideas 

of the Euclidean Klein-model: 
 

- semiconcrete calcule DELTAkappa of Klein-number strings as the Individual strings; 

 one could use the same coding procedure as in DELTAalpha . 
 

- semiconcrete calcule PIkappa of Klein-point strings as the Individual strings  
 

The semiconcrete calcules DELTAkappa and PIkappa are subcalcules of the semiconcrete calcules 

DELTAalpha and PIalpha . Klein-number strings are Decimal-biradical-number strings, Klein-point 

strings are Descartes-point strings, but the very promising conjecture says that it is not so the other way 

round. This can be formulated in various ways for calcule piepsilon and calcule deltaalpha as well, from 

the general case to the simplest case: 

 
 

conjectures in conventional fashion 
 

Construct Klein-numbers starting from sr(2sr(2)-2) using  

annition (x+y)/(1+xy) , menition -x , evition xy/(y+z)with sr(x2+y2)<1 and not y+z=0 , 

riation sr(x2+y2-x2y2) , clarition sr((x2-y2)/(1-y2)) with not x2< y2 and 

 jacition (1-sr((1-y2(1-x2))/(1-z2)))/x if not x=0 else 0 
 

Not all biradical numbers between -1 and 1 are Klein-numbers. 
 

 

1/2  is not a Klein-number.  

 

 
 

conjectures with respect to calcule piepsilon 

 

Not all points of the cali-circle are Klein-points. 

111 
 

Not all points of the proto-diameter are Klein-points. 

111 
 

Proto-dimi coe is not a Klein-point. 

c  
 

 
 

conjectures with respect to calcule deltaalpha 

 

Not all biradical numbers with diametrity are Klein-numbers. 

1m11u1n1 
 

The nonvanishing rational numbers with diametrity are not Klein-numbers. 

1m11u1n11 
 

Dimi cuis not a Klein-number. 

c  
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4.9  Non-standard L-geometry 

 

In section 4.2 the axioms of the abstract calcule pilambda of planar Lobachevsky L-geometry were 

introduced, including the so-called Proto-octomidial-axiom A26  ('proto-octomidial equilateral triangle') 

without a correspondence in E-geometry. Now it is the time to justify the inclusion of this Axiom and its 

special choice. 
 

One can define various L-geometries with the same axioms A1 to A25 but each with a different additional 

axiom with respect to equilateral triangles. The simplest choice is the abstract calcule pinualpha of planar 

Nikolai-7 septimidial L-geometry. For its expression some definition work has to be done in pilambda: 
 

Firstly two cali-functions are defined as special variants of the Liebmann-functions 

angle-angle-angle-base-triangulation   

angle-angle-angle-tip-triangulation   
 

cali-liebmann-base-triangulation  

cali-liebmann-tip-triangulation 
 

both with the condition  oe1oe2oe3

     o12o23 
 

which means that o123123 form a protive triangle with  a base point 

123 on the proto-ray. The three angles are given by  oe1 and  o12 and  

o23 where care is taken that their sum is less than the straight angle. The cali-liebmann-

functions are defined: 
 

123oe1o12o23 

123oe1o12o23 
 

The Liebmann construction has a deep meaning. In E-geometry one chooses a proto-pair of different 

points oe without any requirements. Generally speaking: there are no properties of pairs of points 

that can be expressed in E-geometry.  In L-geometry, however, pairs of points1) have a property that can 

be expressed in Funcish. As a funny consequence with respect to the geometry of the physical world 

Gauss has suggested to do triangular measurements to find out what kind of geometry is realized in the 

physical world (but he knew that there was an accuracy problem).  
 
 

Assume a person can communicate with some intelligent being somewhere in the universe and he  wants 

to tell his partner how tall2) he is. Assume further that so far they could not communicate about physics 

but perfectly about mathematics. Now there are two possibilities: if the physical geometry is 
 

- Euclidean, there is no chance to communicate the size 

- Lobachevskyan, one sends the angle-defect of the equilateral triangle to that size 

 (more exactly: a series of dyadic angle defects, for a given accuracy) 
 

 

Return to serious business. Calcule pinualpha has the same axioms A1 to A25  as pilambda but in addition 

the  Proto-septimidial-axiom : 
 

A26a proto-septimidial equilateral triangle

 oooooooeee 

 

The Axiom mater of inductivity is taken directly from pilambda .That is all. But what does it mean ?
 
1)  By the way, single points have no properties in both planar geometries without reference to the proto-pair. 
2)  By no means  he can tell his partner that he is right-handed, they just can agree that there are two sense of direction   
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Every THEOREM of pilambda that does not involve the proto-octomidial triangle is also a THEOREM of 

pinualpha . Otherwise o and e can be used like o and e . But now one can make use of the 

cali-liebmann-functions in pinualpha as well and construct the proto-octimidial-unit-point ee on 

the proto-ray for the base and one point for the tip of the proto-octimidial triangle in pinualpha . This 

means that everyTHEOREM of pilambda that does involve the proto-octimidial triangle is also a 

THEOREM of pinualpha , one just has to replace e by ee . On the other hand: There is no THEOREM 

of pilambda that corresponds to the Proto-septimidial-axiom . No septisection of angles is possible in 

pilambda ; this is inferred from the Klein-model: a septisection in pilambda would require septisection 

in E-geometry. The only possible parts of the straight angle that can be obtained in E-geometry are given 

as products of Fermat-primes and powers of two (seven is not among them). Therefore one has:  

 
 

Every THEOREM of pilambda is a THEOREM of pinualpha 

 

Not every THEOREM of pinualpha is a THEOREM of pilambda 
 

 

These are two metatheorems, using the string-replacement metafunctions and 

  one gets in proper Mencish : 
 
 

11THEOREM111THEOREM1 
 

11THEOREM111THEOREM1 
 
 

1THEOREM1THEOREM1 
 

1THEOREM1THEOREM1 
 

 

The Proto-septimidial-axiom is not the only choice for an Axiom that can replace Proto-octomidial-axiom 

as  A26 .  One certainly can take all dividings of the straight angle that cannot be obtained constructively 

in E-geometry. This means that one can use all partings  that do not correspond to products of Fermat-

primes and powers of two (seven is not among them) i.e. 7, 11, 13, 19, 21 … one can write down a 

corresponding Proto-midial-axiom A26a ,  A26b ,  A26c , A26d ,  A26e … . This means that there are 

infinitely man nonstandard L-geometries, each with a mutually exclusive Proto-midial-axiom . 
 

Of course this means that the calcule pibeta of Bolyai1) L-geometry that only comprises A1 to  A25 is not 

complete , meaning that it contains limbHOOD sentence strings that are neither a TRUTH nor a 

FALSEHOOD because one can add the standard Proto-octomidial-axiom or any nonstandard Proto-midial-

axiom as described above. It may well be that there are more nonstandard choices, perhaps the Proto-

nonomidial-axiom , but this not relevant at this moment. 

 

From all possible Lobachevsky L-geometry calcules pilambda was picked by Proto-length-axiom A26 as  

a standard, as it is the simplest and smallest. Smallest in the sense that it is a genuine subcalcule of the 

other calcules (like the one with the septimidial angle), that one could call nonstandard-L-geometries. 

 

So this chapter led to two very important results: 
 
 

-  L-geometry, as it is usually defined is not complete, there are nonstandard L-geometries 
 

-  All nonstandard L-geometries contain Lobachevsky L-geometry, which can be taken as standard  
 

 

 

 

 

 
1)  honoring poor, partially forgotten Bolyai; it could also be called absolute or neutral L-geometry  
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5.  Extending F-geometry 

5.1  Archimedes axiom, polygons and Fermat-primes 
 

So far little use was made of Archimedes-ordering as it has been mentioned first in section 2.2 . The 

function entiration  was chosen so that one could talk about Archimedes without actually 

introducing natural numbers. It seems that this was sufficient for the only purpose, i.e. the plausibility 

argument for metering the area of a triangle in section 3.4 .  

 

Looking at the development of planar Euclidean geometry one observes hat it talks about polygons and 

especially about regular polygons. This leads to the question, how to incorporate that into the strict 

axiomatic approach. To make it more precise: Carl Friedrich Gauss proved the constructibility of the 

regular 17-gon in 1796. Five years later, he developed the theory of Gaussian periods. This theory 

allowed him to formulate a sufficient condition for the constructibility of regular polygons: A regular n-

gon can be constructed with compass and straightedge if n is the product of a power of 2 and Fermat 

primes (none, one or many). Gauss stated without proof that this condition was also necessary, but never 

published his proof. A full proof of necessity was given by Pierre Wantzel in 1837. The result is known 

as the Gauss–Wantzel theorem. This is all well understood, but it is yet to be formulated in an abstract 

calcule piomega that meets our rigor. In the calcules that have been introduced so far there is no way to 

talk about numbers. This is changed by including the calcule ALPHABETA of bi-Robinson arithmetics  

(with dual natural power) . One has to enrich the ontological basis by natural numbers with 

corresponding functa and some functa that refer to both points and numbers. The calcule piepsilon is 

replaced by abstract calcule piomega of planar Wantzel E-geometry that includes ALPHABETA (one 

could do a similar extension of Lobachevsky L-geometry) in addition to Euclid E-geometry: 
 

sort natural-number  

basis-individual-constant nullumn unusu   

extra-individual-constant duob buu 
 

basis-function-constant 

natural addition   

natural multiplication   

bi-ponentiation 2x   nu  1u1b 

natural production   e.g.  31211212 
 

basis-relation-constant 

minority    

 

With this enrichment of the ontological basis and corresponding trivial Axiom strings of  bi-Robinson 

arithmetics and Axiom strings for Archimedes replacing  A22 , A23 and  A24 one has the proper base. 

One then can do the proper definitions of extra-functum-constant extra- strings that are used in the 

relevant THEOREM strings for regular polygons etc. . 
 

extra-relation-constant 

oddity   Odd  Odd1

      221122u 
 

primality  Prime  Prime1u1221

      331123 
 

fermat-primality Fermprime Fermprime1

      Prime1212u  
 

One can express the construction-condition for 1 as count of corners of a regular polygon as: 

23Fermprime2123  

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Heptadecagon
https://en.wikipedia.org/wiki/Gaussian_period
https://en.wikipedia.org/wiki/Sufficient_condition
https://en.wikipedia.org/wiki/Fermat_prime
https://en.wikipedia.org/wiki/Fermat_prime
https://en.wikipedia.org/wiki/Necessary_condition
https://en.wikipedia.org/wiki/Pierre_Wantzel
https://en.wikipedia.org/wiki/Sufficient_condition
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5.2  Isoscition paradox 
 

What happens if one simply replaces Axiom A21e of unique parallels in planar E-geometry calcule 

piepsilon  by Axiom A21l of multiple parallels of planar L-geometry calcule pilambda ? Call this abstract 

calcule pichi .There is only isoscition  in pichi and you cannot define circulition 

as the THEOREM in section 3.3 depended on the Axiom A21e of unique parallels. It 

seems that you can prove very little in abstract calcule pichi . And strangest of all: given three pairs of 

points: there is not a unique protive triangle with corresponding sides, because that is what circulition 

would do! There may be none or sometimes there may be many - you cannot prove the unique existence 

of such a triangle. It is questionable if pichi is a complete calcule. 
 

 

 

5.3  Higher dimension and elliptic geometries of O 
 

Going to higher dimensions one gets at first the calcule pipi of spatial or 3-dimensional neutral geometry, 

with sort  . The ontological basis has to be amended by a sexary function pilation 

 with a proper condition that the three spheres intersect and give a tetrahedron 

with positive orientation. The condition for circulation  has to be adapted too. 
 

Going one step further one gets the calcule pipipi of hyperspatial or 4-dimensional neutral geometry 

with sort  . The ontological basis has to be amended by a sexary function hyperpilation 

 with a proper condition that the four hyperspheres intersect and give a 

tetrahedron with positive orientation. The conditions for circulation  and pilation 

 have to be adapted too. 
 

The question of parallelity has to be investigated anew in every higher-dimensional geometry. The 

Euclidean case is straightforward. The good news is that biradical functions are sufficient for Euclidean 

geometries of higher dimension. No use has to be made of higher functions as shortly described in the 

section 5.4. 
 

Axiom A7 'directivity appension' excludes geometries with looping lines, i.e. so-called elliptic S-

geometries (S refers to sphere). One can set up these geometries as geometries of O as well. So-called 

elliptic geometry is a non-Euclidean-geometry where there are no parallels. It was not considered in this 

publication. Although it is two-dimensional it is not a planar geometry as lines are not 'unlimited'  
 

 

 

5.4  Higher radical and algebraic numbers 
 

Biradical numbers can be generalized to higher radical numbers in a straightforward fashion. E.g. 

quinradical numbers of calcule deltadelta with contain square roots  , cubic roots  , 

quadric roots  and quintic roots  . For radical numbers in general one need the 

inclusion of power-Robinson arithmetic into calcule deltarho with and . Besides addition 

and multiplication power-Robinson arithmetic contains exponentiation  . 

Unary function square root of calcule deltaalpha is replaced by binary root with base 

and power as arguments, that is the inverse of potentiation. It is important to notice that radical numbers 

are recursively defined starting from a unit u and successive application of the basic functions.
 

Radical numbers are not to be confused with algebraic numbers, that are given as solutions of 

polynomial expressions. The solutions of polynomial expressions with integer coefficients comprise 

more than roots, starting with degree 5 where elliptic functions become necessary as Charles Hermite 

has shown. One also has to enter the world of complex numbers with a calcule etaalpha of algebraic 

numbers. It seems that they are not relevant in the geometries of O.  
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5.5  Final remarks 
 

A remark on terminology: the Greek  for geometry contains the words  and which 

mean earth and metering. However, the abstract calcules pi , piepsilon and pilambda are purely 

mathematical systems. Only by a  theory of the physiacl world and its application to observations and 

experiments a road can be opened to physical geo-metry. Metering implies in our normal understanding 

a correspondence of certain physical objects with some kind of numbers. The funny thing about abstract 

planar F-geometry is, that it can do without any numbers: it talks about points, lines, circles, segments, 

triangles, angles et cetera; and no metering, neither of distances or angles or areas is necessary. Only in 

so-called analytical geometry (and in extended axiomatic geometry) one has numbers for all kinds of 

meterings, usually they are taken to be real numbers, which by the way is pretty awkward, as real 

numbers are far too rich. Metering is a somewhat strange procedure in geometry, it is not decidable if a 

distance or an angle or an area is less or equal to another one resp. as the necessary numbers are not 

'decidable'.  
 

Why investing so much time in good old geometry? The answer: it is not just a 'Glasperlenspiel' for the 

entertainment of a private scholar. After all, geometry is so important for our world, it is at the very basis 

of our understanding of the world. Whereas Kant hat thought that Euclid's geometry was an a priori 

notion for human understanding, since Lobachevsky one knows that in principle other geometries of the 

world are possible as well. Eventually Einstein taught us that the natural science of geometry cannot be 

based on an a priori notion of space-time either. We rather have to observe eclipses of the sun and so 

forth and put forward new theories without prejudging geometry etc. . 
 

However, it seems that Einstein had an understanding that some kind of mathematics is taken a priori. 

Not the so-called Euclidean space, as he discovered different metrics both in special and general 

relativity. But he stuck to real numbers and all the transcendental calculus jazz that is on the base of 

his Riemannian geometries like on many other domains of mathematics. Perhaps it is there that future 

generations of physicists (and mathematicians) have to start the lever. After all quantum physics also 

tells us that something strange happens at fermi-distances. Perhaps the incompatibility of quantum 

physics and gravitational theory stems from inadequate mathematical ontology of geometrical points 

and physical particles, physical fields and metrics. 
 

The so-called Euclidean space of n dimensions, denoted by Rn is not Euclidean in the axiomatic sense. 

It is a tuple-system based on real numbers using limits and more of calculus. As there is not even a 

semiconcrete model of real numbers there is a principal problem for applying R3 to the physical world. 
 

The beauty of Lobachevsky's geometry lies in the fact that it gives rise to think about ontology with 

respect to mathematics in general and in reconsidering concepts of equivalence and ordering with and 

without the use of numbers. It helps us to remove all of our supposed a priori notions about the physical 

world: 'it ain't necessarily so' (Sporting Life in 'Porgy and Bess').   
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Appendix A  History table and literature 
       publication (with reference number underlined: actually used) 

BC  Thales of Milet 624/23-548/544   … 

BC  Pythagoras of Samos 570-510    … 

BC  Aristotle 384-322      syllogism, actual versus potential infinity … 
 

BC  Euclid of Alexandria ca. 360-300  Euclidis – Elementorum libri, 

       (1) Euclid Elements, book 1-6 
 

BC  Archimedes of Syracuse ca.287-212    … 
 

         Wilhelm Ockham 1288-1347   nominalism, Ockham's razor (novacula Occami) 

         Ludolph van Ceulen1540-1610   Ludolph number pi 

         René Descartes 1596-1650   cartesian coordinates ? 

         Pierre de Fermat 1607–1665   cartesian coordinates (better fermat-coordinates) 

1794  Adrien-Marie Legendre 1752-1833  Éléments de géométrie 

1654  Johannes Clauberg 1622-1665   'Entia non sunt multiplicanda sine necessitate' 

1733  Girolamo Saccheri 1667–1733   Euclides ab Omni Naevo Vindicatus 

1708   Bishop George Berkeley 1685-1753  Philosophical Commentaries 

1710       A Treatise Concerning the Principles of Human Knowledge 

1766  Johann Heinrich Lambert 1728-1777   … 

1781  Immanuel Kant 1724-1804   (2) Kritik der reinen Vernunft 

1826  Nikolai Ivanovich Lobachevsky 1792-1856 Complete Collected Works  

             1829–1830 Vol. I:. Geometrical Investigations on the theory 

       of parallel lines; on the foundation of geometry 

            1835-1838 Vol. II: New foundations of geometry with a  

       complete theory of parallels  

1832 János Bolyai 1775-1856    treatise on a complete system of non-Euclidean geometry,

       published as an appendix to a math-textbook by his father 

1854  Johann Carl Friedrich Gauss 1777-1855 no publication concerning non-Euclidean geometry 

          Pierre Wantzel 1814-1848    … 

          Arthur Cayley 1821-1895    … 

          Eugenio Beltrami1835-1900    … 

          Felix Klein 1880-1975     … 

          Henri Poincaré 1854-1912   … 

          Hermann Minkowski 1864-1910    … 

1879  Gottlob Frege 1848 – 1925   'Begriffsschrift' ('Concept script') 

1882  Moritz Pasch 1843-1930   Vorlesung über Neuere Geometrie 

1891  Giuseppe Veronese 1854-1917   Fondamenti di geometria 

1899  David Hilbert 1862-1943   (3) Grundlagen der Geometrie  13. Auflage 1987 

1922  Ludwig Wittgenstein 1889-1951  (4) Tractatus logico-philosophicus 

1922  Heinrich Liebmann1874-1939   (5) Nichteuklidische Geometrie 

1926  Alfred Tarski 1901-1983   Givant, Steven, 'Tarski's system of geometry' 

        Bulletin of Symbolic Logic 5: 175-214(1999) 

1961  Max Frisch 1911-1991    (6) Don Juan oder Die Liebe zur Geometrie 

1962  Oskar Perron 1880-1975   (7) Nichteuklidische Elementargeometrie der Ebene 

1964  Richard Baldus 1885-1945   (8) Nichteuklidische Geometrie , Hyperbolische  

          Frank Löbell 1893-1964        Geometrie der Ebene 

1983  W.Schwabhäuser, W.Szmielew and A. Tarski (9) Metamathematische Methoden in der Geometrie 

2006  the author, arxiv.org cs/0610038  (10) Church's thesis is questioned by new calculation paradigm 

 forthcoming With the Calculation Criterion of Truth (11) Opus logico-mathematicus 

2007  Marvin Greenberg 1935-2017   (12) Euclidean and Non-Euclidean Geometries …  

https://de.wikipedia.org/wiki/1752
https://de.wikipedia.org/wiki/1833
https://en.wikipedia.org/wiki/A_Treatise_Concerning_the_Principles_of_Human_Knowledge
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.9012
https://arxiv.org/abs/cs/0610038
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Appendix B  Index of individual-, function- and relation-constants 
 

In alphabetic order within calcules pi , piepsilon , pilambda , piomega and deltaalpha for basis- and 

extra- (for quadrangles, felix and klein-cases some have no references to sections). 
 

There are many newly coined names of constants, some are deviant from conventional usage. 
 

 

 

all calcules basis function-constant   comment ref. 

decision  logical projection function with  2.1 

    

calcule pi basis-individual-constant  ref. 

proto-end e necessary reference point 2.1 

proto-origin  o necessary reference point 2.1 

calcule pi  basis function-constant  ref. 

appension  segment-segment-attachment 2.1 

circulition  circle-circle-intersection 2.2 

entiration  maximum of multiples of a pair 2.1 

isoscition  isosceles triangle construction 3.1 

linisection  line-line-intersection 2.1 

calcule pi extra-individual-constant  ref. 

cali-above a above unit 2.3 

cali-halfright x intersection of  e;i  and o;a 2.3 

cali-imago i unit on ortho-line, not imaginary 2.3 

cali-low l below unit 2.3 

proto-dimi c center (half) of proto-segment 2.3 

proto-full f double-unit 2.3 

proto-halfright w for halfright angle 2.3 

proto-minus-end m minus-unit 2.3 

proto-quarter v quarter of proto-segment 2.3 

proto-right r for right angle 2.3 

proto-three-half g  three-half-unit 2.3 

calcule pi extra-function-constant cali ref. 

absolute-triangle-

combination 
 vertices at 1 4, no sensitivity 2.6 

absolute-triangle-dichot.  absolute dichotomition of angle 2.6 

adipension  absolute difference of two pairs 2.3 

angle-metrition  see cali-angle-metrition 2.6 

angle-side-angle triangul.  triangle construction 2.5 

angle-side-side-triangul.  triangle construction 2.5 

anti-ortho-parallelation  opposite direction 2.3 

anti-perculation  right at 1 2.3 

anti-resection  second circle12-line34-intersection 2.3 

anti-riscolation  right-isoscelation at 1 2.3 

cali-abscissation   abscissa on oe 2.4 

cali-adipension  absolute difference from proto-pair 2.4 

cali-angle-metrition  angle-meter on proto-line 2.7 

cali-contra-angulation  value on cali-circle 2.7 

cali-contra-cathetetion  contrive, E-geometry for sr(abs(1-x2)) 2.4 

cali-contra-hypothetion  contrive triangle, E-geom.for sr(1+x2) 2.4 
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cali-cosinition  distance cosine from o 2.7 

cali-mabation  metered absolute abscissa 2.4 

cali-mabotion  metered absolute ordinate 2.4 

cali-meter-angulation  value on cali-circle 2.7 

cali-opposition  sort of translation of 1 by o2 2.7 

cali-ordination  ordinate on oe 2.4 

cali-pair-metrition  pair mapped on proto-line 2.5 

cali-pro-angulation  value on cali-circle 2.7 

cali-pro-cathetetion  protive, E-geometry for sr(abs(1-x2)) 2.4 

cali-pro-hypothetion  protive triangle, E-geom.for sr(1+x2) 2.4 

cali-reflection  mirroring with respect to proto-line 2.7 

cali-rotation  rotation of 1 around o 2.7 

cali-sinition  distance sine from o 2.7 

center-rotation  induces a rigid motion 2.6 

contra-cathetetion  hypotenuse cathetus, contrive  2.3 

contra-hypothetion  cathetus cathetus contrive 2.3 

dispension  appending from first point 2.3 

emaxation  greater or equal distance 2.2 

emination  smaller or equal distance 2.2 

equi-triangulation  equilateral triangle 2.3 

opposition  rotation by straight angle around center, 2.3 

pair-dichotomition  bisection with respect to appension 2.3 

pair-doublition  appending itself 2.3 

perpendiculation  from 3to 12 2.3 

pro-cathetetion  hypotenuse cathetus, protive 2.3 

pro-hypothetion  cathetus cathetus protive 2.3 

proto- triplication  3x 2.6 

proto-absolute-subtraction  abs(x-y) 2.6 

proto-absolution  abs(x) 2.6 

proto-addition  x+y 2.6 

proto-angle-addition  added angles 2.7 

proto-angle-bisection  half angle 2.6 

proto-angle-duplication  double angle 2.7 

proto-angle-negativation  other direction 2.7 

proto-angle-subtraction  subtracted angles 2.7 

proto-bisection  x/2 2.6 

proto-cathecation ( in Euclid sr(1-x2)   2.6 

proto-cathetion ( in Euclid sr(x2- y2) Pythagoras-subtraction-

square-root 
2.6 

proto-cisition   special proportition with cissection 2.6 

proto-duplication  2x  2.6 

proto-hypocation ( in Euclid sr(1+x2),  2.6 

proto-hypotion ( in Euclid sr(x2+y2) Pythagoras-addition-square-

root 
2.6 

proto-negativation  -x 2.6 

proto-subtraction  x-y 2.6 

proto-transition  special proportition with transsection 2.6 

rectification  right angle 1 same height 2.3 

rectification  right angle 1 same height 2.3 

reflection  of 3at 12 2.3 
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segment-rotation  induces a rigid motion, angle separate 2.6 

side-angle-angle-triangul.  triangle construction 2.5 

side-angle-side-triangul.  triangle construction 2.5 

side-side-side-triangul.  triangle construction 2.5 

suspension  appending other direction 2.3 

syn-ortho-parallelation  same direction, translation 2.3 

syn-perculation  right at 2 2.3 

syn-resection  circle12-line34-intersection 2.3 

syn-riscolation  right-isoscelation at 2 2.3 

triangle-combination  sensitivity taken into account 2.6 

triangle-dichotomition  dichotomition of angle 2.6 

triangle-doublition  sensitivity taken into account 2.6 

calcule pi extra-relation-constant  cali  ref. 

absolute-angle-congruity  vertices at 1 and 4, up to straight angle  2.5 

absolute-angle-congru-

minority 
 vertices at 1 and 4 2.5 

absolute-angle-minority  vertices at 1 and 4 2.5 

acute-angularity Aca vertex 1 , protive or contrive 2.3 

angle-congruity  vertices at 1 and 4 2.5 

angle-minority  vertices at 1 and 4 2.5 

angularity  tri- or line-angularity 2.3 

anti-contra-parallelity  one of 4 combinations 2.3 

anti-line-equality  with opposite direction 2.3 

anti-parallelity  opposite direction, regular 2.3 

anti-pro-parallelity  one of 4 combinations 2.3 

appensity  line arrangement   2.3 

betweenity (as in pitau)  internity or second point equal 1.4 

cali-circlity  points inside cali-circle 2.4 

circle-area-particity CIA relative 3 2.5 

circle-line-particity CIL relative 3 2.5 

circulity  two circles intersect or touch 2.1 

cissectivity  cis-position of pairs; with entitor 2.1 

collinicity  three different points on a line 2.3 

concave-quadrangularity  usual meaning  

contra-parallelity  contrivity 1 2 3 2.3 

contrivity  counter-clockwise 2.3 

convex-quadrangularity  usual meaning  

ellipse-area-particity ELA relative 4 2.5 

ellipse-line-particity ELL relative 4 2.5 

equilaterality  equilateral triangle 2.3 

fringe-non-linisectivity  neither parallelity nor linisectivity 2.3 

fringe-transsectivity  at most one pair, collinic or equal 2.3 

halfright-angularity Hra vertex 1 , protive or contrive 2.3 

hyperbola-area-particity HYA relative 4 2.5 

hyperbola-line-particity HYL relative 4 2.5 

internity  three different points with inner point 2.3 

isoscelity  vertex 1  2.3 

isoscity  same radii intersect or touch 2.3 

lina-circulity  two circles touch (3 ways) 2.1 
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line-angularity  zero- or straight-angular 2.3 

line-equality  two pairs of points constitute same line 2.3 

linicity  two points may be the same on the line 2.3 

lini-contrivity  contrive or linic 2.3 

lini-protivity  protive or linic 2.3 

linisectivity  transsectivity or cissectivity 2.1 

non-linisectivity  parallel or fringe-non-linisectivity 2.3 

oblique-angularity Ola vertex 1 , protive or contrive 2.3 

obtuse-angularity Ota vertex 1 , protive or contrive 2.3 

pair-congruity  usual meaning 2.1 

pair-conminority  pair-congruity or -minority 2.1 

pair-minority  usual meaning 2.1 

parallelity  regular-parallelity or line-equality, 

with entitor 
2.3 

perpendicular-equidistancy  defines equidistant-line relative 4 2.5 

pervex-quadrangularity  crossing sides  

prima-isoscity  same radii 2.3 

pro-parallelity  protivity 1 2 3 2.3 

protivity  sense of orientation clockwise (convention) 2.3 

proto- nonnegativity  proto-ray including o 2.4 

proto-cisity  cissectivity in cali-circle , points on non-

negative proto-ray 

2.4 

proto-cyclicity  cycle-segment o(included) to f (excluded) 2.4 

proto-diametrity  diameter-segment m(excluded) to 

e(excluded) 

2.4 

proto-dyadic-cyclicity  dyadic in cycle-segment 2.4 

proto-dyadicity  recursively defined  by proto-bisection, proto-

addition and proto-negativation,  start from e  

2.4 

proto-equal-minority  proto-minority or equality 2.4 

proto-linity  points on proto-line:oe1 2.4 

proto-minority  points on proto-line 2.4 

proto-negativity  negative-proto-ray excluding o 2.4 

proto-nonpositivity  negative-proto-ray including o 2.4 

proto-positivity  proto-ray excluding o 2.4 

proto-radity  radius-segment o (included) to e (excluded) 2.4 

quadrangle-congruity  without sensitivity  

quadrangle-contrivity  counter-clockwise  

quadrangle-protivity  sense of orientation clockwise  

quadrangle-sense-congr.  with sensitivity  

quadrangularity  genuine quadrangle  

regular-parallelity  no common point, no line-equality, with entitor 2.3 

regular-transsectivity  two genuine pairs 2.3 

right-angularity  vertex 1 , protive or contrive 2.3 

riso-angularity  vertex 1 , right isoscelic 2.3 

straight-angularity  213 2.3 

straight-line-particity STL relative 3 2.5 

syn-contra-parallelity  one of 4 combinations 2.3 

syn-line-equality  with same direction 2.3 

syn-parallelity  same direction, regular 2.3 

syn-pro-parallelity  one of 4 combinations 2.3 
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transsectivity  regular or fringe, not line-equality no entitor 2.1 

tria-circulity  two circles intersect 2.1 

tria-isoscity  same radii intersect 2.3 

triangle-anchor-congruity  correspondingly congruent without sensitivity 2.3 

triangle-anchor-sense-

congruity 
 with sensitivity 2.3 

triangle-congruity  without sensitivity (mirror included) 2.3 

triangle-sense-congruity  with sensitivity 2.3 

tri-angularity  protive or contrive, not linic, 3 diff.  points 2.3 

zero-angularity  123 or 132 or 123 2.3 

calcule piepsilon extra-individual-constant  ref. 

klein-proto-end ke for Klein in Euclid 4.6 

klein-proto-full kf for Klein in Euclid 4.6 

klein-proto-halfright kw for Klein in Euclid 4.6 

klein-proto-minus-end km for Klein in Euclid 4.6 

klein-proto-right kr for Klein in Euclid 4.6 

calcule piepsilon extra-function-constant additional ref. 

area-endometrition  intrinsic, Fermat-cathetus  3.4 

area-exometrition  with respect to pair 3.4 

area-right-combination  ditto but same base, right angle 3.4 

area-triangle-combination  for triangle with combined area, same base and  

adjacent angle 
3.4 

cali-anti-resection ( opposite direction 3.6 

cali-area-endometrition  mapping to proto-line 3.5 

cali-area-exometrition  special cali-proportion 3.5 

cali-area-quad-metrition  square thereof 3.6 

cali-biradication  sr(abs(x)) 3.5 

cali-cross-metrition  result on proto-radius  3.6 

cali-cross-ration  result on proto-raye 3.6 

cali-divix-portion  special cali-proportion 3.5 

cali-endo-biradication  sr(x) with 1<=x 3.5 

cali-eu-motion  Euclid symmetry transformation 2.9 

cali-exo-biradication  sr(x) with 0<= x<=1 3.5 

cali-multix-portion   special cali-proportion 3.5 

cali-quadrix-portion   3.5 

cali-recix-portion   special cali-proportion 3.5 

cali-syn-resection ( intersects cali-circle with pair 3.6 

cali-tension  stretching with center o 3.6 

felix-annition    proto-addition 4.7 

felix-appension  represents Lobachevsky appension  4.6 

felix-carlition  proto-angle-addition 4.7 

felix-circulition  represents Lobachevsky circulition 4.6 

felix-clarition ( proto-pro-cathetion 4.7 

felix-dyadic-angle-

metrition 
 recursive definition, only for dyadic points in 

cycle-segment,values between  o and f 
4.7 

felix-entiration  represents Lobachevsky entiration 4.6 

felix-evition  proto-lisition 4.7 

felix-franition  proto-angle-bisection 4.7 

felix-hansition  proto-angle-negativation 4.7 

felix-isoscition  represents Lobachevsky isoscition 4.6 
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felix-jacition  proto-tripedition 4.7 

felix-linisection  represents Lobachevsky linisection 4.6 

felix-luisition  bisection with respect to annition 4.7 

felix-mariation  duplication with respect to annition 4.7 

felix-matition  subtraction with respect to annition 4.7 

felix-menition  proto-negativation 4.7 

felix-pair-doublition  represents Lobachevsky doublition 4.6 

felix-petrition  proto-angle-subtraction 4.7 

felix-riation ( proto-pro-hypotion 4.7 

felix-rudition  proto-angle-duplication 4.7 

klein-annition    proto-addition 4.7 

klein-appension  represents Lobachevsky appension  4.8 

klein-carlition  klein-angle-addition 4.8 

klein-circulition  represents Lobachevsky circulition 4.8 

klein-clarition ( proto-pro-cathetion 4.7 

klein-dyadic-angle-

metrition 
 recursive definition, only for dyadic points in 

cycle-segment,values between  o and k 

4.8 

klein-entiration  represents Lobachevsky entiration 4.8 

klein-evition  proto-lisition 4.7 

klein-franition  klein-angle-bisection 4.8 

klein-hansition  klein-angle-negativation 4.8 

klein-isoscition  represents Lobachevsky isoscition 4.8 

klein-jacition  proto-tripedition (1-sr((1-y2(1-x2)/(1-z2)))/x 4.7 

klein-linisection  represents Lobachevsky linisection 4.8 

klein-luisition  klein-bisection 4.8 

klein-mariation  klein-duplication 4.8 

klein-matition  klein-subtraction 4.8 

klein-menition  proto-negativation 4.7 

klein-pair-doublition  represents Lobachevsky doublition 4.8 

klein-petrition  klein-angle-subtraction 4.8 

klein-riation ( proto-pro-hypotion 4.7 

klein-rudition  klein-angle-duplication 4.8 

locustition  form-different from N-geometry 3.3 

proportition  cross-multiplication 3.3 

proto-biradication ( sr(x) square root 3.6 

proto-cross-ration ( ((u-y)(v-x))/((v-y)(u-x)) 3.6 

proto-division ( x/y 3.6 

proto-dyadic-angle-

metrition 
( recursive definition, only for dyadic points in 

cycle-segment, values between  o and f 
3.6 

proto-multiplication ( x.y 3.6 

proto-ortho-immetrition 12 y.sr(1-x2) in open  -1 to 1 3.6 

proto-ortho-metrition 12 y/sr(1-x2) in open  -1 to 1 3.6 

proto-para-immetrition 12 y(1-x2)/(1+xy) in open  -1 to 1 3.6 

proto-para-metrition 12 y/(1-x(x+y)) in open  -1 to 1  3.6 

proto-quadration, -

cubation 
(, ( x2 ,  x3 3.6 

proto-reciprocation ( 1/x 3.6 

proto-reduction  (x-1)/(x+1)with  x not -1 3.6 

proto-upduction  (x+1)/(x-1)with  x not 1 3.6 

square-division  special case of cross-multiplication 3.3 
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calcule piepsilon extra-relation-constant  ref. 

anti-contra-mono-

parallelity 
 one of 4 combinations 3.3 

anti-mono-parallelity  opposite direction 3.3 

anti-pro-mono-parallelity  one of 4 combinations 3.3 

contra-mono-parallelity  contrivity 1 2 3 3.3 

eu-cissectivity  eu-linisectivity, not transsectivity, no  entitor 3.3 

eu-linisectivity  no eu-parallelity or fringe-non-linisectivity, no 

entitor 
3.3 

eu-parallelity  mono-parallelity or line-equality, no entitor 3.3 

felix-appensity  represents Lobachevsky-appensity 4.6 

felix-circulity  represents Lobachevsky-circulity  4.6 

felix-cissectivity  represents Lobachevsky-cissectivity 4.6 

felix-cyclicity  cycle-segment o (included) to kf 
(excluded); 

 

felix-dyadic-cyclicity  felix-dyadic in cycle-segment,  

felix-dyadicity  recursively by felix-annition, 

 -menition, -luisition from ke 
 

felix-equal-minority  represents Lobachevsky-equ.-minority  

felix-isoscelity   represents Lobachevsky-isoscelity 4.6 

felix-lina-circulity  represents Lobachevsky-lina-circulity 4.6 

felix-linisectivity  represents Lobachevsky-linisectivity  4.6 

felix-minority  represents Lobachevsky-minority  

felix-negativity   represents Lobachevsky-negativity  

felix-nonnegativity  represents Lobachevsky-nonnegativity  

felix-nonpositivity  represents Lobachevsky-nonpositivity  

felix-pair-congruity  represents Lobachevsky-pair-congr. 4.6 

felix-positivity  represents Lobachevsky-positivity  

felix-radity  radius-segment o (included) to 

ke(excluded); 

 

felix-transsectivity  represents Lobachevsky-transsectivity 4.6 

felix-tria-circulity  represents Lobachevsky-tria-circulity 4.6 

klein-appensity  represents Lobachevsky-appensity  

klein-circlity  Klein points inside Euclid cali-circle, 

recursively defined 
 

klein-circulity  represents Lobachevsky-circulity   

klein-cissectivity  represents Lobachevsky-cissectivity  

klein-congruity  represents Lobachevsky-pair-congr.  

klein-diametrity  Klein points inside Euclid diameter-segment 

recursively defined 
 

klein-isoscelity   represents Lobachevsky-isoscelity  

klein-lina-circulity  represents Lobachevsky-lina-circulity  

klein-linisectivity  represents Lobachevsky-linisectivity   

klein-transsectivity  represents Lobachevsky-transsectivity  

klein-tria-circulity  represents Lobachevsky-tria-circulity  

mono-parallelity (eu-

regular-) 
 no common point, no line-equality, no entitor 3.3 

pro-mono-parallelity  protivity 1 2 3 3.3 

proto-klein-cyclicity  Klein-cycle-segment o (included) to kf 
(excluded); 

4.8 

proto-klein-dyadic-cyclicity  klein-dyadic in cycle-segment 4.8 
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proto-klein-dyadicity  recursively defined by klein-bisection, klein-

addition and klein-negativation from ke 
4.8 

proto-klein-equal-minority  analogously 4.8 

proto-klein-minority  1212 4.8 

proto-klein-negativity   analogously 4.8 

proto-klein-nonnegativity  analogously 4.8 

proto-klein-nonpositivity  analogously 4.8 

proto-klein-positivity  analogously 4.8 

proto-klein-radity  Klein-radius-segment o (included) to 

ke(excluded); 

4.8 

quadrangle-area-equality  usual meaning  

quadrangle-area-minority  usual meaning  

rectangularity  rectangle  

squarity  square  

syn-contra-mono-

parallelity 
 one of 4 combinations 3.3 

syn-mono-parallelity  same direction 3.3 

syn-pro-mono-parallelity  one of 4 combinations 3.3 

triangle-anchor-sense-

similarity 
 with sensitivity  

triangle-anchor-similarity  correspondingly similar without sensitivity  

triangle-area-equality  usual meaning  

triangle-area-minority  usual meaning  

triangle-sense-similarity  with sensitivity  

triangle-similarity  without sensitivity (mirror included)  

tri-quadrangle-area-

equality 
 usual meaning  

tri-quadrangle-area-

minority 
 usual meaning  

calcule pilambda extra-function-constant  ref. 

angle-angle-angle-base- 

triangulation 


 

not in E ! Liebmann-function 4.4 

angle-angle-angle-tip- 

triangulation 


 

not in E ! Liebmann-function 4.4 

angle-angle-right-triang.  not in E ! 4.4 

angle-defection   difference of straight and sum 4.5 

angle-right-triangulation   not in E ! riso-triangulation 4.4 

angle-summation  usual meaning 4.5 

anti-angle-horo-

parallelation 
 distance for which the angle is horo 4.3 

anti-horo-parallelation  horoparallel to pair  thru point 4.3 

archimedes-triangulation  not in E ! octomidial-equilateral triangle (three  

halfright angles) 
4.4 

cali-angle-defect-metrition  calibrated angle-defection 4.5 

cali-liebmann-base-

triangulation 
 calibrated Liebmann base 4.9 

cali-liebmann-tip-triangul.  calibrated Liebmann tip 4.9 

cali-lo-motion  Lobachevsky symmetry transformation 2.9 

contra-horo-parallel-

angulation 
 parallel angle for distance 4.3 

levification   4.4 
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lo-area-triangle-

combination 
 the condition of angle sum less straight is not 

written explicitly 
4.5 

pro-horo-parallel-

angulation 
 parallel angle for distance 4.3 

side-angle-angle-

triangulation 


 

usual meaning 4.4 

syn-angle-horo-

parallelation 
 distance for which the angle is horo 4.3 

syn-horo-parallelation  horoparallel to pair  thru point 4.3 

calcule pilambda extra-relation-constant  ref. 

anti-contra-horo-parallelity  one of 4 combinations 4.3 

anti-contra-hyper-

parallelity 
 one of 4 combinations 4.3 

anti-horo-parallelity  opposite direction 4.3 

anti-hyper-parallelity  opposite direction 4.3 

anti-pro horo-parallelity  one of 4 combinations 4.3 

anti-pro-horo-parallelity  one of 4 combinations 4.3 

Bolyai-quadrangularity  opposite right-angles 4.4 

Bolyai-quadrity  legs equal 4.4 

contra-horo-parallelity  contrivity 1 2 3 4.3 

contra-hyper-parallelity  contrivity 1 2 3 4.3 

Gauss-quadrity  equal angles, equal sides 4.4 

horo-parallelity  no entitor 4.3 

hyper-parallelity  between syn-horo and anti-horo, no entitor 4.3 

Lambert-quadrangularity  three right-angles 4.4 

Lambert-quadrity  legs equal 4.4 

light-angularity  vertex 1 4.4 

liso-angularity  vertex 1 , light isoscelic 4.4 

lo-cissectivity  no entitor 4.3 

lo-linisectivity  no entitor 4.3 

lo-parallelity  horo- or hyper-parallelity or line-equality 4.3 

lo-quadrangle-area-

equality 




usual meaning 4.4 

lo-quadrangle-area-

minority 




usual meaning 4.4 

lo-triangle-area-equality  usual meaning 4.4 

lo-triangle-area-minority  usual meaning 4.4 

lo-tri-quadrangle-area-

equality 
 usual meaning 4.4 

lo-tri-quadrangle-area-

minority 
 usual meaning 4.4 

poly-parallelity (lo-

regular-) 
 horo- or hyper-parallelity 4.3 

pro-horo-parallelity  protivity 1 2 3 4.3 

pro-hyper-parallelity  protivity 1 2 3 4.3 

Saccheri-quadrangularity  adjacent right-angles 4.4 

Saccheri-quadrity  legs and base equal 4.4 

syn-contra hyper-

parallelity 
 one of 4 combinations 4.3 

syn-contra-horo-parallelity  one of 4 combinations 4.3 

syn-horo-parallelity  same direction 4.3 
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syn-hyper-parallelity  same direction 4.3 

syn-pro-horo-parallelity  one of 4 combinations 4.3 

syn-pro-hyper-parallelity  one of 4 combinations 4.3 

calcule piomega basis-individual-constant in addition to piepsilon ref. 

nullum n zero  5.1 

unus u one 5.1 

calcule piomega basis function-constant in addition to piepsilon ref. 

natural-addition  natural number Robinson arithmetic 5.1 

natural-multiplication  ditto 5.1 

natural-production  note 0121 5.1 

calcule piomega basis-relation-constant in addition to piepsilon ref. 

minority  usual meaning 5.1 

calcule piomega extra-individual-constant in addition to piepsilon ref. 

duo b two 5.1 

calcule piomega extra-function-constant in addition to piepsilon ref. 

bi-ponentiation  2n recursively defined 5.1 

calcule piomega extra-relation-constant in addition to piepsilon ref. 

fermat-primality Fermprime usual meaning 5.1 

oddity Odd usual meaning 5.1 

primality Prime usual meaning 5.1 

calcule deltaalpha basis-individual-constant biradical number ref. 

nullum   n 0 3.8 

unus   u 1 3.8 

calcule deltaalpha basis-function-constant  ref. 

addition  x+y 3.8 

biradication  sr(x) 3.8 

multiplication  xy 3.8 

negativation  -x 3.8 

reciprocation  1/x 3.8 

calcule deltaalpha basis-relation-constant  ref. 

positivity  usual meaning 3.8 

calcule deltaalpha extra-individual-constant  ref. 

dimi c 1/2 3.8 

duo b 2 3.8 

klein-biradical-end ke sr(2sr(2)-2) 4.8 

klein-biradical-full kf (2sr(2sr(2)-2))/(2sr(2)-1) 4.8 

klein-biradical-minus-end km - sr(2sr(2)-2) 4.8 

minus-one m -1 3.8 

calcule deltaalpha extra-function-constant additional  ref. 

absolution  abs(x) 3.8 

angle-addition, cyclation  with respect to cyclic angle-metering 3.8 

angle-bisection  with respect to angle-addition 3.8 

angle-duplication  with respect to angle-addition 3.8 

angle-negativation  with respect to angle-addition 3.8 

angle-subtraction  with respect to angle-addition 3.8 

bisection  1/x 3.8 

cathecation  ( sr(1-x2) 3.8 

cathetion ( sr(x2-y2) 3.8 

division  x/y 3.8 

duplication  1/x 3.8 
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hypocation ( sr(1+x2) 3.8 

hypotion ( sr(x2+y2) 3.8 

klein-annition    (x+y)/(1+xy) 4.8 

klein-clarition ( sr((x2-y2)/(1-y2)) 4.8 

klein-evition  xy/(y+z) 
with sr(x2+y2)<1 and not y+z=0 

4.8 

klein-jacition  (1-sr((1-y2(1-x2)/(1-z2)))/x  

if not x=0 else 0 
4.8 

klein-menition  -x 4.8 

klein-riation ( sr(x2+y2-x2y2 4.8 

quadration  x2 3.8 

subtraction  x-y 3.8 

calcule deltaalpha extra-relation-constant additional  ref. 

cyclity  number in cycle-segment between 0 and 2 3.8 

diametrity  number in diameter-segment between -1 and 1 3.8 

dyadic-cyclity  dyadic number constr.by bisection, addition and 

negativ. from 1 in cycle-s. between 0 and 2 
3.8 

dyadicity  number constructed by bisection, addition and 

negativation from 1 
3.8 

equal-minority  usual meaning 3.8 

klein-cyclity   combined with cyclity 4.8 

klein-diametrity  recursively constructed by klein-functions from 

ke, diameter-segment between -1 and 1 
4.8 

klein-dyadic-cyclity   klein-dyadicity combined with cyclity 4.8 

klein-dyadicity  recursively constructed by klein-bisection, klein-

addition and klein-negativation  from ke, in 

klein-cycle-segment between 0 and kf 

4.8 

klein-radity   combined with radity 4.8 

minority  usual meaning 3.8 

negativity   usual meaning 3.8 

nonnegativity  usual meaning 3.8 

nonpositivity  usual meaning 3.8 

radity  number in radius-segment between 0 and 1 3.8 

rationality  rational number 3.8 
 


